Accepted Manuscript

Title: A novel mesoporous sulfated zirconium solid acid catalyst for Friedel-Crafts benzylation reaction

Authors: Zhichao Miao, Jin Zhou, Jinping Zhao, Dandan Liu, Xu Bi, Lingjun Chou, Shuping Zhuo

PII: S0169-4332(17)30864-4

DOI: http://dx.doi.org/doi:10.1016/j.apsusc.2017.03.183

Reference: APSUSC 35559

To appear in: APSUSC

Received date: 19-1-2017 Revised date: 10-3-2017 Accepted date: 21-3-2017

Please cite this article as: Zhichao Miao, Jin Zhou, Jinping Zhao, Dandan Liu, Xu Bi, Lingjun Chou, Shuping Zhuo, A novel mesoporous sulfated zirconium solid acid catalyst for Friedel-Crafts benzylation reaction, Applied Surface Sciencehttp://dx.doi.org/10.1016/j.apsusc.2017.03.183

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

<AT>A novel mesoporous sulfated zirconium solid acid catalyst for Friedel-Crafts benzylation reaction

<AU>Zhichao Miao^a, Jin Zhou^a, Jinping Zhao^a, Dandan Liu^a, Xu Bi^a, Lingjun Chou^{b*} ##Email##ljchou@licp.cas.cn##/Email##, Shuping Zhuo^{a*} ##Email##zhuosp_academic@yahoo.com##/Email## <AU>

<AFF>aSchool of Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China

<AFF>bState Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China

<PA>* Correspondences to: (S. P. Zhuo) Fax: +86 533 2781664; (L. J. Chou) Fax: +86 931 4968129. Highlights▶

<ABS-Head><ABS-HEAD>Graphical abstract <ABS-P>

<ABS-P><xps:span class="xps_Image">fx1</xps:span><ABS-HEAD> ► Highlights
► A novel mesoporous ZrO₂/SO₄²⁻ has been prepared via a facile one-pot EISA strategy. ► The M-ZrO₂/SO₄²⁻ exhibited excellent textural and acidic properties. ► The introduced S species were homogeneously dispersed in mesoporous skeleton. ► The M-ZrO₂/SO₄²⁻ exhibited excellent catalytic performance and reusability.

<ABS-HEAD>Abstract

<ABS-P>In this paper, a novel mesoporous sulfated zirconium (M-ZrO₂/SO₄²⁻) has been gotten by one-pot evaporation-induced self-assembly (one-pot EISA) strategy. The SXRD, N₂-physisorption and TEM characterization techniques indicated that M-ZrO₂/SO₄²⁻ possessed distinct mesostructure with big specific surface area (133.5 m²·g⁻¹), large pore volume (0.18 cm³·g⁻¹) and narrow pore size distribution (4.90 nm). Moreover, the existing states and the influence in mesostructure of introduced S species were detailedly investigated by the XRD, N₂-physisorption, TEM, TG-DSC, FT-IR and XPS techniques and the results showed that the S species, which existed as the type of SO₄²⁻, improved the textural properties of prepared materials. In addition, the NH₃-TPD and IR spectra of adsorbed pyridine indicated the existence of strong Brønsted and Lewis acid sites in M-ZrO₂/SO₄²⁻ even evacuated at 400 °C. Furthermore, the M-ZrO₂/SO₄²⁻ was used as a promise solid acid catalyst and displayed excellent catalytic performance and reusability in Friedel-Crafts benzylation reaction.

Download English Version:

https://daneshyari.com/en/article/5347136

Download Persian Version:

https://daneshyari.com/article/5347136

<u>Daneshyari.com</u>