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a  b  s  t  r  a  c  t

We  applied  principal  component  analysis  (PCA)  to two-dimensional  tunneling  spectroscopy  (2DTS)  data
obtained  on  a Si(111)-(7  × 7) surface  to  explore  the effectiveness  of  multivariate  analysis  for  interpreting
2DTS  data.  We  demonstrated  that  several  components  that  originated  mainly  from  specific  atoms  at  the
Si(111)-(7  × 7)  surface  can  be  extracted  by PCA.  Furthermore,  we  showed  that hidden  components  in the
tunneling  spectra  can  be  decomposed  (peak  separation),  which  is  difficult  to  achieve  with  normal  2DTS
analysis  without  the  support  of theoretical  calculations.  Our  analysis  showed  that  multivariate  analysis
can be  an  additional  powerful  way  to  analyze  2DTS  data  and  extract  hidden  information  from  a  large
amount  of spectroscopic  data.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Scanning tunneling spectroscopy (STS) is one of the most impor-
tant operation modes of scanning tunneling microscopy (STM), and
can evaluate the local density of states (LDOS) [1–4] and the ele-
mentary excitations [5–7] at surfaces with high spatial and energy
resolution. Normally, tunneling differential conductance (dI/dV)  is
measured as a function of bias voltage (V) in STS experiments since
dI/dV is proportional to the LDOS of the surface [4,8,9]. The observed
features in the spectra are related to the states at energy E with the
simple relationship E − EF = eV,  where EF is the Fermi level in the
sample and V is the tip-sample voltage [9].

In addition to local tunneling spectroscopy, two-dimensional
tunneling spectroscopy (2DTS) (also known as current imaging tun-
neling spectroscopy) is also used to visualize the spatial distribution
of LDOS at energy E [9,10]. In a 2DTS measurement, STS is performed
at each pixel of the STM image. The typical image size is about
128 × 128 points, thus providing a large set of tunneling spectra
(more than 10,000). Although the spectral features in each curve are
related to the LDOS distribution in energy, it is not straightforward
to determine their origin due to the lack of standard spectra in con-
trast to other spectroscopic methods, such as X-ray photo electron
spectroscopy (XPS) and Auger electron spectroscopy (AES) [11–13].
Therefore, generally, density-functional theory (DFT) calculation is
required to interpret the spectral features.
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Multivariate analysis has been used in a wide range of fields as
a method to extract significant information from a large amount of
data [14]. One of the most frequently used multivariate analyses is
principal component analysis (PCA), which finds combinations of
variables (called principal components, PCs) that describe impor-
tant trends in large amounts of data. PCA is often used to decrease
the number of dimensions of large amounts of data and makes it
easier to interpret them. In fact, PCA has so far been applied to
large amounts of spectroscopic data from XPS, AES and time-of-
flight secondary ion mass spectrometry for peak identifications,
peak decompositions, estimation of the number of linearly inde-
pendent chemical species in a collection of spectra, and reduction
of noise in spectra [15–20].

In this study, we  analyzed 2DTS data (obtained on a Si(111)-
(7 × 7) surface) using PCA to explore the effectiveness, potential,
and limitations of the multivariate analysis for interpreting 2DTS
data (which is in the form of a large set of tunneling spectra). Com-
ponents classified by PCA can be assumed to originate dominantly
from the rest atoms, center adatoms in the faulted half (FH), center
adatoms in the unfaulted half (UFH), and dimer atoms. It is difficult
to discern some of them in the raw spectral data due to the super-
position of those components with other larger components. Thus,
it is difficult to extract those components from 2DTS data using
normal analysis methods without the support of theoretical cal-
culation. Our analysis showed that multivariate analysis can be an
additional powerful tool for analyzing 2DTS data to extract hidden
information.
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2. Methods

2.1. STS

STS measurements were performed at 78 K under ultrahigh vac-
uum (UHV) with a pressure of less than 1 × 10−8 Pa. Commercial
PtIr tips were used. Tip cleaning was performed in situ using elec-
tron bombardment. The Si(111)-(7 × 7) surface was  prepared by
heating a piece of n-type Si(111) wafer (P doped, <0.01 �cm)  at
1470 K for 5 s under UHV. In the 2DTS measurement, we  obtained
the tunneling current spectrum (I–V curve) at each pixel of the STM
image with a grid size of 128 × 128. The number of spectral points
was 256 in a bias range from −1.3 V to 1.3 V. The obtained spectra
were numerically differentiated using a Savitzky–Golay differen-
tiation filter. After that, the dI/dV-V  spectra were normalized by
the averaged tunneling conductance ( ¯I/V) to remove the tunneling
probability component [21].

2.2. PCA

The data set of 128 × 128 normalized dI/dV spectra from the
2DTS measurement can be viewed as a matrix of the normalized
dI/dV values where the columns correspond to the variables (bias
voltage) and rows correspond to the samples (spectrum at each
pixel). PCA was performed on this matrix, D(m, n), where m is the
number of samples and n is the number of variables. To calculate
the PCs of D, we solve an eigenvalue problem of the corresponding
covariance matrix [14]. First, matrix D is transformed to matrix X
through mean-centering and division by

√
m − 1 as follows.

X = 1√
m − 1

(d1) − 〈d〉(d2) − 〈d〉
...(dm) − 〈d〉, (1)

where di (i = 1, 2, . . .,  m)  is a row vector corresponding to the ith
normalized dI/dV spectrum and 〈d〉 is the row vector correspond-
ing to the averaged normalized dI/dV spectrum calculated from m
(128 × 128) spectral data. Then, the covariance matrix of D can be
calculated as XTX. To solve the eigenvalue problem of the covari-
ance matrix, singular value decomposition (SVD) was used. SVD
gives the eigenvalues and eigenvectors of XXT and XTX. According
to SVD,

X = U�1/2VT, (2)

where U(m, l) and V(n, l) (l is a rank of matrix X) are matrices con-
sisting of the eigenvectors of XXT and XTX, respectively. �1/2(l, l) is
a diagonal matrix whose diagonal elements are the eigenvalues, �j
(j = 1, 2, . . .,  l), where �1 > �2 > · · · > �l. The eigenvectors of XTX cor-
respond to the PCs, Pj (j = 1, 2, . . .,  l), of D. The PCs are orthogonal to
each other, and the norm is equal to 1, that is,

Pi · Pj = ıij, (3)

where ıij is the Kronecker delta. The percentage of original variance
retained by each PC (contribution ratio) can be calculated using the
following equation:

Contribution ratio of PCj = 100 × �j∑l
k=1�k

(j = 1, 2, . . .,  l). (4)

The original normalized dI/dV spectra can be expressed by the
sum of the averaged normalized dI/dV spectrum and the linear
combination of the PCs, as follows:

di = 〈d〉 +
l∑

j=1

cjPj (i = 1, 2, . . .,  m), (5)

where cj is the coefficient of the jth PC, which reflects the amount of
correlation between di and Pj. Since the PCs are orthogonal to each

Fig. 1. Contribution ratio and cumulative contribution ratio of principal components
from PC1 to PC10.

other, cj can be calculated by taking the inner product between
di − 〈d〉 and Pj. Thus, the score matrix S(m, l) can be calculated using
the following equation,

S = XV = U�1/2, (6)

where each row of S(m, l) contains the projections of the corre-
sponding spectrum on the different PCs. Also, score plot images
corresponding to Pj can be obtained by arranging the values in each
column of S(m, l) into two-dimensional arrays (128 × 128) with the
same size as that of the STM image.

2.3. Computational details

DFT simulations were performed using localized atomic
basis sets implemented in the GPAW code [22–24]. Opti-
mized atomic structures have been obtained within the
Perdew–Burke–Ernzerhof (PBE) generalized-gradient approxi-
mation [25]. Partial density of states (PDOS) calculations were
conducted using the GLLB-sc functional [26]. The electron-core
interactions were described by the projector-augmented wave
method [27]. We  used double-zeta plus polarized basis sets and
8 × 8 k-points in the two-dimensional Brillouin zone.

3. Results and discussion

We performed PCA on a data set of the normalized dI/dV spectra
from a 2DTS measurement that contains 128 × 128 spectra (see the
Section 2 for details). Fig. 1 shows the contribution ratio and the
cumulative contribution ratio of the calculated PCs. The contribu-
tion ratio gradually decreases as the PC number increases. After PC5,
the values were less than 5% and decrease nearly linearly. Thus, we
roughly estimated the number of dominant principal components
to be four. Since the PCs with a low contribution ratio have little
information included in the spectra data, we discuss only about
PC1–PC4 in detail below.

The loading plots of PC1–PC4 (PC spectrum) are shown in Fig. 2.
As discussed with regards to Eq. (5) in the Methods section, the
normalized dI/dV spectra can be expressed as a sum of the aver-
aged spectrum (〈d〉) and the linear combination of calculated PCs
(
∑
cjPj). This means that the spectral shape of each PC spectrum

exhibits the difference from the averaged spectrum (〈d〉). Thus, the
loading values can be negative. The PC1 spectrum shows a large
negative peak at −0.89 V and a small one at 0.45 V. The PC2 spec-
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