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a b s t r a c t

A two-stage linear discriminant analysis technique is proposed that utilizes both the null space and range
space information of scatter matrices. The technique regularizes both the between-class scatter and
within-class scatter matrices to extract the discriminant information. The regularization is conducted
in parallel to give two orientation matrices. These orientation matrices are concatenated to form the final
orientation matrix. The proposed technique is shown to provide better classification performance on face
recognition datasets than the other techniques.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Linear discriminant analysis (LDA) is a well known technique
for dimensionality reduction and feature extraction (Duda et al.,
2000; Sharma and Paliwal, 2006, 2008, 2010, 2012; Chen et al.,
2000; Lu et al., 2003a,b, 2005; Yang et al., 2003; Yu and Yang,
2001; Swets and Weng, 1996; Belhumeur et al., 1997; Ye, 2005;
Guo et al., 2007; Thomaz et al., 2005; Huang et al., 2002; Tian
et al., 1986; Zhao et al., 2003; Jiang et al., 2008; Gao and Davis,
2006; Paliwal and Sharma, 2010, 2011; Mandal et al., 2010).
Dimensionality reduction plays crucial role in the face recognition
problem. It is generally applied for improving robustness (or gen-
eralization capability) and reducing computational complexity of
the face recognition classifier. In the LDA technique, the orientation
matrix W is computed from the eigenvalue decomposition (EVD) of
S�1

W SB (Duda et al., 2000), where SW 2 Rd�d is within-class scatter
matrix, SB 2 Rd�d is between-class scatter matrix and d is the
dimensionality of feature space. In the face recognition problem,
the matrix SW becomes singular and its inverse computation be-
comes impossible. Several techniques are reported in the literature
that overcome this drawback of LDA (Chen et al., 2000; Lu et al.,
2003a,b, 2005; Yang et al., 2003; Yu and Yang, 2001; Swets and
Weng, 1996; Belhumeur et al., 1997; Ye, 2005; Guo et al., 2007;
Thomaz et al., 2005; Sharma and Paliwal, 2010, 2012; Huang
et al., 2002; Tian et al., 1986; Zhao et al., 2003; Jiang et al., 2008;
Paliwal and Sharma, 2010, 2011; Mandal et al., 2010).

In LDA, there are four informative spaces namely, null space of

SW Snull
W

� �
, range space of SW Srange

W

� �
, null space of SB Snull

B

� �
and

range space of SB Srange
B

� �
. All these four individual spaces have sig-

nificant discriminant information (refer Appendix I for empirical
demonstration). To approximate the inverse computation of SW,
different combinations of these spaces are used in the literature
for finding the orientation matrix W. For an instance the pseudo-
inverse technique (Tian et al., 1986) uses Srange

W and Srange
B to com-

pute the orientation matrix. The regularized LDA technique (Zhao

et al., 2003) uses Snull
W ; Srange

W and Srange
B . However, due to the use of

small value of regularization parameter (compared to the large
eigenvalues of SW), the Srange

W gets de-emphasize in the inverse oper-
ation of SW. Therefore, the influential spaces in the regularized LDA

technique are Snull
W and Srange

B . Similarly, the null LDA technique

(Chen et al., 2000) uses Snull
W and Srange

B . These techniques basically
utilize two spaces in the orientation matrix computation and dis-
card the other two spaces. Since the individual spaces contribute
crucial discriminant information for classification, discarding some
spaces would sacrifice the classification performance of the classi-
fier. Theoretically, if all the four spaces can be inherited appropri-
ately in the computation of orientation matrix W then the
classification performance can be improved further.

In this paper, we exploit ways of utilizing all the four spaces. The
inclusion of all the spaces of scatter matrices is done in two analy-
ses. Fig. 1 illustrates the proposed strategy. The orientation matrix
can be computed from the input data by carrying out two discrim-
inant analyses in parallel. In the first analysis, the orientation matrix
W1 is computed by retaining top eigenvalues and eigenvectors of
S0�1

W SB , where non-singular matrix S0 is the approximation of singu-
lar matrix S. This will retain Snull

W and Srange
B . In the second analysis,

the orientation matrix W2 is obtained by retaining top eigenvalues
and eigenvectors of S0�1

B SW . This will retain Srange
W and Snull

B .
The orientation matrices obtained by these two analyses are
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concatenated to get the final orientation matrix W, i.e.,
W = [W1,W2]. For brevity we call the proposed technique the two-
stage LDA technique. The non-singular approximation S0 of singular
matrix S can be evaluated in two ways: (1) using regularized LDA
technique (Zhao et al., 2003) where S0 = S + aI (a is the regulariza-
tion parameter); and, (2) using extrapolation technique (Jiang
et al., 2008; Sharma and Paliwal, 2010) where eigenvalues of S are
extrapolated by applying curve fitting or some criterion function.
In this paper we show that the resulting orientation matrix W pro-
vides better classification results than other existing techniques.

2. Notations and descriptions

Let us denote the n linearly independent training samples (or
feature vectors) in d-dimensional space by —v ¼ x1; x2; . . . ; xn, having
class labels X = {x1,x2, . . . ,xn}, where xi 2 {1,2, . . . ,c} and c is the
number of classes. The set —v can be subdivided into c subsets
—v1;—v2; . . . ;—vc where each subset —vj belongs to a particular class la-
bel and consists of nj number of samples such that:

n ¼
Xc

j¼1

nj

and —vj � —v and —v1 [—v2 [ � � � [—vc ¼ —v.
Let lj be the centroid of —vj and l be the centroid of —v, then the

between class scatter matrix SB, within-class scatter matrix SW and
total-scatter matrix ST are defined as (Duda et al., 2000)

SB ¼
Xc

j¼1

njðlj � lÞðlj � lÞT ð1Þ

SW ¼
Xc

j¼1

Sj ð2Þ

where

Sj ¼
X
x2—vj

ðx� ljÞðx� ljÞ
T

and

ST ¼
X
x2—v
ðx� lÞðx� lÞT ð3Þ

Since in the face recognition task d > n, the scatter matrices SB, SW

and ST will be singular with ranks rb = c � 1, rw = n � c and rt = n � 1,
respectively. The null space of ST carries no discriminative informa-
tion (Huang et al., 2002), therefore, the dimensionality can be re-
duced from d-dimensional space to rt = n � 1 dimensional space
by applying principal component analysis (PCA) as a pre-processing
step to remove the null space of ST. This would make the technique
computationally faster. The range space of total scatter matrix
UTR 2 Rd�rt will be used as a transformation. This will give us trans-
formed within-class scatter matrix bSW 2 Rrt�rt and transformed be-
tween-class scatter matrix bSB 2 Rrt�rt . These matrices can be
decomposed as

bSW ¼ UW D2
W UT

W ð4Þ

andbSB ¼ UBD2
BUT

B ð5Þ

where DW 2 Rrt�rt and DB 2 Rrt�rt are diagonal matrices whose ele-
ments (arranged in descending order) are the square-root of the
eigenvalues of bSW and bSB, respectively; and UW 2 Rrt�rt and
UB 2 Rrt�rt are orthogonal matrices consisting of the corresponding
eigenvectors as columns. Since the rank of bSW is rw, the matrix UW

can be formed as UW = [UWR,UWN] where UWR 2 Rrt�rw corresponds
to the range space of bSW and UWN 2 Rrt�ðrt�rwÞ corresponds to the
null space of bSW . In a similar way, we can write UB = [UBR,UBN]
where UBR 2 Rrt�rb corresponds to the range space of bSB and
UBN 2 Rrt�ðrt�rbÞ corresponds to the null space of bSB.

3. Two-stage LDA technique

It is well known in the literature that the null space of bSW con-
tains crucial information for classification (Chen et al., 2000; Ye,
2005). The null space based LDA techniques retain the null space
information of bSW , however, they discard the range space informa-
tion of bSW . It has been seen that the range space information of bSW

is also important for classification (Swets and Weng, 1996; Bel-
humeur et al., 1997) and by discarding it could penalize classifica-
tion performance. Some techniques (e.g. Guo et al., 2007; Zhao
et al., 2003; Jiang et al., 2008; Sharma and Paliwal, 2010) estimates
non-singular within-class scatter matrix bS 0W by adding a small po-
sitive constant (known as regularization parameter) to the eigen-
values of bSW (Guo et al., 2007; Zhao et al., 2003) or by
extrapolating the eigenvalues of bSW in its null space (Jiang et al.,
2008; Sharma and Paliwal, 2010). Thereafter, obtaining the eigen-
vectors corresponding to the top eigenvalues of bS 0�1

W
bSB. In these

techniques the null space information of bSW and the range space
information of bSB are effectively retained. Although, the range
space information of bSW is utilized in these techniques, it has very
less influence as it is de-emphasized in the inverse operation of bSW

(see Fig. 2). Nonetheless, theoretically the latter implementation
would contain more information than the former techniques. To
see the qualitative contribution of bS 0�1

W
bSB in obtaining the orienta-

tion matrix, we decompose bS 0W into its eigenvalues and eigenvec-
tors asbS 0W ¼ UW

bD2
W UT

W ð6Þ

where diagonal matrix bDW ¼
RW 0
0 bRW

� �
; RW 2 Rrw�rw and

bRW 2 Rðrt�rwÞ�ðrt�rwÞ is the estimation or regularization of eigen-
values RW.

From Eq. (5), bSB can be formed as

bSB ¼ ½UBR;UBN�
R2

B 0
0 0

" #
UT

BR

UT
BN

" #
¼ UBRR

2
BUT

BR ð7Þ

where RB 2 Rrb�rb .
From Eqs. (6) and (7), we can writebS 0�1

W
bSB ¼ UW

bD�2
W UT

W UBRR
2
BUT

BR ð8Þ

The EVD of Eq. (8) can be computed and the range space informa-
tion of bS 0�1

W
bSB can be used in the formation of orientation matrix.

Three things can be observed here:

(1) The null space of bSB is discarded.
(2) The range space information of within-class scatter matrix

in the inverse operation is de-emphasized.
(3) The null space of the product bS 0�1

W
bSB is discarded.

Fig. 1. The proposed strategy.
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