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a b s t r a c t

In this paper, we propose a motion recognition scheme based on a novel method of motion feature
extraction. The feature extraction method utilizes auto-correlations of space–time gradients of three-
dimensional motion shape in a video sequence. The method effectively exploits the local relationships
of the gradients corresponding to the space–time geometric characteristics of the motion. For recognizing
motions, we apply the framework of bag-of-frame-features, which, in contrast to the standard bag-of-fea-
tures framework, enables the motion characteristics to be captured sufficiently and the motions to be
quickly recognized. In experiments on various datasets for motion recognition, the proposed method
exhibits favorable performances as compared to the other methods, and faster computational time even
than real time.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Motion recognition has attracted a great deal of attention in re-
cent decades and is important for numerous applications, such as
video surveillance, man–machine interface, and analysis of sports
motion. Significant research efforts in computer vision community
have been made to categorize human actions and gestures in video
sequences. With the development of the image recognition tech-
niques, methods for recognizing motions have also progressed
and produced promising results in recent years.

While conventional methods have used ad hoc knowledge based
on human body parts (for a survey, refer Gavrilla, 1999), recent
studies have employed statistical approaches without such knowl-
edge. By regarding a motion image sequence as three-way data in
the space–time (XYT) domain, the methods that are applied to
(two-way) image recognition have been naturally generalized to
motion recognition (Dollar et al., 2005; Jhuang et al., 2007; Laptev
et al., 2008; Kobayashi and Otsu, 2009; Blank et al., 2005; Kim
et al., 2007). The motion is explicitly dealt with as space–time
shape by Blank et al. (2005) who extracted human silhouettes from
motion images.

In particular, the bag-of-features framework (Csurka et al.,
2004) has been successfully applied to motion recognition (Dollar
et al., 2005; Laptev et al., 2008; Wong and Cipolla, 2007) as well as
image recognition (Bosch et al., 2007). In that framework, the rec-
ognition of motion relies on local features which are based on sim-
ple histograms of spatial gradient orientations (HOG) (Dalal and
Triggs, 2005) and space–time derivatives (Dollar et al., 2005; Zel-

nik-Manor and Irani, 2006). These local features cannot fully cap-
ture the space–time shape of the motions and do not have much
discriminative power. Therefore, in the bag-of-features framework,
the motion is represented as ensembles of numerous local features
extracted around the space–time interest points which are spar-
sely detected by, e.g., a Harris-Laplace detector (Laptev, 2005) or
a nonnegative matrix factorization (NMF) like detector (Wong
and Cipolla, 2007). The sparse interest points, however, are not suf-
ficient to characterize the motion (Dollar et al., 2005; Willems
et al., 2008; Ballan et al., 2009), since densely detected interests
points (like grid points) improve the performance of image classi-
fication (Tuytelaars and Schmid, 2007; Bosch et al., 2007). In mo-
tion images, the higher dimensionality due to the three-way data
increases the number of interest points even for the sparse detec-
tion, which requires a larger computational cost for quantizing the
local features into words, and the denser detection becomes less
feasible.

We propose a novel motion feature extraction method and an
effective and high-speed motion recognition scheme based on
these features. The feature extraction method exploits the local
relationships (co-occurrence) among space–time gradients in the
XYT domain, by developing the gradient local auto-correlation for
image recognition (Kobayashi and Otsu, 2008) to extract space–
time motion features. The local relationships correspond to geo-
metric characteristics, i.e., gradients and curvatures, which are fun-
damental properties of space–time motion shape. For motion
recognition, we utilize the frame-based features which are ex-
tracted from sub-sequences sampled at dense (grid) time points
along the time axis. In this approach, referred to as the bag-of-
frame-features approach, the frame-based features sufficiently
characterize the motion in the spatial domain in contrast to the lo-
cal features, and the motion in the entire sequence is described by
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the densely sampled features along the time axis. The bag-of-
frame-features approach is effective and fast due to the reduced
computation of the frame-based features achieved by applying
integral histograms (Porikli, 2005) and the small number of the
sampling points placed only along the time axis without a require-
ment for time consuming interest point detection.

This paper has the following three main contributions: (1) to
propose a novel motion feature extraction method, (2) to demon-
strate the favorable performance of the proposed method for mo-
tion recognition on various datasets as compared to the other
methods, and (3) to exhibit much faster computational time even
than real time. In particular, the proposed motion features are
based on co-occurrence histograms of the space–time 3D gradient
orientations and they are employed for frame-based features to
densely characterize the motion in contrast to recent works which
sparsely describe the motions by using simple occurrence histo-
gram of gradient orientations. To facilitate the implementation,
we explicitly describe the practical details of the proposed method,
such as parameter settings.

The rest of the paper is organized as follows: the next section
describes details of the proposed motion feature extraction meth-
od. Then, we describe the scheme to recognize motion using the
features in Section 3. In these sections, we also describe implemen-
tation details, such as parameter values, of the proposed method as
practical issues. In Section 4, the experimental results for motion
recognition are shown. Finally, Section 5 contains our concluding
remarks.

2. Feature extraction

First, we describe the method for extracting features of motion
in the space–time domain. The image feature extraction method in
(Kobayashi and Otsu, 2008) is developed to deal with space–time
volume in an image sequence, and we call the proposed method
space–time auto-correlation of gradients (STACOG). STACOG extracts
the local relationships, such as co-occurrence, among the space–
time (three-dimensional) gradients by means of the auto-correla-
tion functions regarding the space–time orientations and the mag-
nitudes of the gradients. The local relationships are closely related
to the local geometric characteristics of space–time motion shape.
In addition, STACOG has the property of shift-invariance which is
desirable for recognition.

2.1. Space–time gradient

The space–time (three-dimensional) gradient vector is calcu-
lated by derivatives (Ix, Iy, It) of motion image volumes I(x,y, t) at

each space–time point in an image sequence. As shown in
Fig. 1(a), the gradient vectors can be geometrically represented
by the magnitudes m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2
x þ I2

y þ I2
t

q
and two types of angle: spa-

tial orientation h = arctan(Ix, Iy) in an image frame and temporal
elevation / = arcsin(It/m) along the time axis, where the functions
arctan and arcsin output the angles within [0,2p) and [�p/2,p/2],
respectively. The space–time orientation of the gradient defined by
these two angles is coded into B orientation bins on a unit sphere
by voting weights to the nearest bins (Fig. 1(b)). Then, the orienta-
tion is finally described by a B-dimensional vector h, called space–
time orientation coding (STOC) vector. The STOC vector h consists
of the weights voted to B bins and is sparse: The number of non-
zero elements is at most four (see Fig. 1(a)).

Practical issue. For coding the gradients, we consider a hemi-
sphere ignoring the opposite directions of the gradients. Thus, bins
are located on the hemisphere as follows. Four orientation bins
along the longitude are arranged on each of five layers along the
latitude, and one bin is located at pole. Thus, there are a total of
B = 21 bins, as illustrated in Fig. 1(b).

2.2. Definition of STACOG

The Nth order auto-correlation function for the space–time gra-
dients is defined by using the magnitude m and the STOC vector h
of the gradients as follows:

RNða1; . . . ;aNÞ ¼
Z

w½mðrÞ; . . . ;mðr þ aNÞ�hðrÞ � � � � � hðr þ aNÞdr;

ð1Þ

where ai are displacement vectors from the reference point
r = (x,y, t), w is a weighting function, and � denotes the tensor prod-
uct of the vector. In the tensor products, there are a few non-zero
components associated to the gradient orientations of the neighbors
indicated by ai. Thus, Eq. (1) extracts the local relationships such as
co-occurrence of space–time gradients (Fig. 2(a)).

We restrict the parameters such that N 2 {0,1}, a1x,y 2 {±Dr,0},
a1t 2 {Dt,0}, w(�) �min(�), as in (Kobayashi and Otsu, 2008). For
the displacement interval, we use different parameters, Dr and
Dt, in the spatial and temporal axes, respectively. For the spatial
axes, the interval along the x-axis is made equal to that along the
y-axis because of isotropy in the XY plane. On the other hand, the
temporal interval Dt may be different from the spatial interval
Dr because the resolutions of space and time may differ. With re-
spect to the weight function w, we adopt min in order to suppress
the effect of isolated noise on surrounding auto-correlations.

Consequently, we obtain the following practical formulation of
STACOG:

Fig. 1. (a) The space–time (three-dimensional) gradients are described by the gradient magnitude m and STOC vector h which codes the gradient orientations (/,h). (b) The
orientation coding is based on bins (denoted by black dots) on a hemisphere, ignoring opposite directions along the longitude. The orientation bins are categorized into two
types along the latitude: static bins (blue) and dynamic bins (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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