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a  b  s  t  r  a  c  t

A  new  methodology  is developed  to determine  the shape  distribution  of gold  nanoparticles  (NPs)  from
optical  spectroscopic  measurements.  Indeed,  the morphology  of Au  colloids  is  deduced  by  fitting  their
absorption  spectra  with  an effective  medium  theory  which  takes  into  account  the  nanoparticle  shape  dis-
tribution.  The  same  procedure  is  applied  to ellipsometric  measurements  recorded  on photoresist  films
which  contain  Au  NPs.  Three  spaces  (L2, r2, P2) are  introduced  to  interpret  the  NPs  shape  distribution.
In  the  P2 space,  the  sphericity,  the  prolacity  and  the  oblacity  estimators  are  proposed  to  quantify  the
shape  of NPs.  The  r2 space  enables  the determination  of  the  NP  aspect  ratio  distribution.  The  distribu-
tions  determined  from  optical  spectroscopy  were  found  to be in  very  good  agreement  with  the  shape
distributions  obtained  by transmission  electron  microscopy.  We  found  that  fitting  absorption  or  ellipso-
metric  spectra  with  an adequate  effective  medium  theory,  provides  a  robust  tool  for  measuring  the shape
and concentration  of metallic  NPs.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Metallic nanoparticles (NPs) such as silver or gold NPs exhibit
strong plasmon resonances whose characteristics depend on their
size, shape and environment [1]. These unique optical proper-
ties give them great potentials as building blocks of photovoltaic
devices and sensors [2–6]. These applications have motivated a
sustained effort towards the control of NP size and shape distri-
butions. Transmission electron microscopy (TEM) is usually used
to estimate the NP radius and shape distribution. However, since
TEM is a local characterization tool, the statistical analysis of NP
distributions from TEM is too time consuming. In addition, TEM
only gives a two dimensional projection of NPs. This could lead
to a poor estimation of NP shape. Tomography mode is currently
under development and is not implemented on conventional TEM.
Moreover, the 3D observation of NPs in tomography mode is too
time consuming to record their distribution over a huge number
of NPs. Thus, the development of non-local alternative character-
ization tools is required to determine the NP shape distribution.
Grazing incidence small angle X-ray scattering (GISAXS) was  pre-

∗ Corresponding author.
E-mail address: yann.battie@univ-lorraine.fr (Y. Battie).

viously used to characterized the morphology of supported NPs
[7–9]. The shape distribution can be estimated by comparing the
measured GISAXS pattern with the simulated one. However, this
technique requires some facilities such as synchrotron beam line.
In addition, this technique cannot be used to characterize NPs in
bulk solution or embedded in thick film.

Recent advances in optical modeling open new ways for quanti-
tative optical characterization of metallic NPs. Garellie et al. [10]
have introduced the NP size distribution into the Mie  theory.
However, Mie  theory fails to describe the optical properties of non-
spherical NPs [11]. As shown by Eustis et al. [12], the aspect ratio
distribution of gold nanorods can be evaluated by fitting their lon-
gitudinal plasmon band by the Gans theory. Slyusarenko et al. [13]
have validated this approach by comparing the NP volume frac-
tion obtained from absorption spectroscopy to the one estimated
by small angle X-Ray scattering measurement. However, Eustis
et al. [12] neglect the influence of the aspect ratio distribution on
the interband transitions and on the transversal plasmon band of
NPs. In addition, this approach is limited to prolate NPs. Spectro-
scopic ellipsometry has been recently exploited to investigate the
growth mechanism of metallic NPs [14–17]. As shown by Oates et al.
[15,16], the NP size, orientation and organization can be character-
ized by spectroscopic ellipsometry. The analysis of ellipsometric
data requires the modeling of the optical properties of nanomate-
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rials. Several approaches such as discrete dipole approximation [18]
or boundary elements method [19] can be used to model the optical
properties of complex NP shapes. However, these approaches are
limited by computational resources and are too time consuming to
take into account the NP shape distribution.

Effective medium theories which approximate the nanocom-
posite material as a homogeneous medium, enable the calculation
of its effective dielectric function with few computational
resources. Toudert et al. [20] have proposed an effective medium
theory based on the Yamaguchi formalism which takes into account
the NP interaction and their size distribution. However, this model
requires a preliminary estimation of the pair correlation function of
NPs by transmission electron microscopy. Another approach based
on the mean field approximation was proposed by Bohren et al.
[21] to extend the effective medium theory to ellipsoidal nanopar-
ticles distributed in shape. This shape distributed effective medium
theory (SDEMT) was used to design broadband epsilon-near zero
composites [22] and to analyze ellipsometric measurements on
gold nanoisland films [23] or absorption measurements on gold
colloids [24–26]. However, the NP shape distribution is represented
in a complex two dimensional space of depolarization parameters
making the interpretation of the NP shape unclear.

In this paper, we determine the NP shape distribution of two
gold colloidal solutions and two photoresist films which contain
gold nanoparticles by fitting their absorption and ellipsometric
spectra with the SDEMT, respectively. To make a quantitative anal-
ysis, we introduce two new spaces P2 and r2 derived from the space
of depolarization parameter L2 to interpret the shape distribution
of NPs. The coordinates (Po, Pp) in the P2 space are assimilated as
estimators of the oblate and prolate character of NPs, respectively.
In addition, the coordinates (r1, r2) in the r2 space correspond to
the aspect ratio of ellipsoïdal NPs. Thus, by using SDEMT com-
bined to an adequate space transformation, we demonstrate that
the nanoparticle shape distribution can be directly extracted from
optical spectroscopy.

2. Theory

2.1. Shape distributed effective medium theory (SDEMT)

The effective dielectric function �eff of a medium composed
of ellipsoidal NPs distributed in shape and randomly oriented in
a matrix is defined as the ratio between the spatial averages of
displacement <D> and electric <E> fields:

εeff = < D >< E >−1. (1)

In the mean field approximation, the spatial averages of electric
<E> and displacement <D> fields in the material are the sum of two
contributions [21]:

〈E〉 = (1 − f ) 〈Em〉 + f 〈Enp〉, (2)

〈D〉  = (1  − f ) εm〈Em〉 + fεnp〈Enp〉, (3)

where �np and �m are the complex dielectric function of NPs and the
matrix, respectively. f is the NP volume fraction of NPs while <Em>
and <Enp> are the spatial average electric field inside the matrix and
NPs, respectively.

In the quasi-static limit i.e. for NP size smaller than the wave-
length, we derive a linear relationship between the electric field
inside NPs and the electric field inside de matrix. For small NP vol-
ume  fraction, the electric field inside the matrix is homogeneous
and the spatial average electric field inside the NPs is related to the
spatial average electric field inside the matrix by:

〈Enp〉 = 〈ˇ〉〈Em〉. (4)

The slope <� > is given by [26]:

〈ˇ〉 = εm

3

∫ ∫
P (L1, L2)

∑3

i=1

1

εm + Li

(
εnp (l) − εm

)dL1dL2. (5)

L1, L2, L3 are the depolarization parameters of ellipsoïdal NPs along
their three principal axis. These parameters which depend on the
NP shape, vary in the 0–1 range and must respect the following sum
rule:

1 = L1 + L2 + L3 (6)

Note that this equation fails for NPs located on an interface. In
this case, dipole images must be taken into account. Other theories
such as the Yamaguchi theory [27] or the Bedeaux and Viegler the-
ory [28,29] must be considered to take into account dipole image
effects. The distribution of the depolarization parameters (P(L1, L2))
is introduced into Eq. (5) to take into account the distribution of NP
shape. The effective dielectric function of a medium composed of
ellipsoidal NPs embedded in a dielectric matrix can be calculated
by combining Eqs. (1)–(4):

εeff = (1 − f ) εm + fεnp〈ˇ〉
(1 − f ) + f 〈ˇ〉 . (7)

This effective dielectric function respects the Wiener limits and
Hashin-Shtrikman bounds. In the following, we  assume that the
distribution of depolarization parameters is described by a sum of
Gaussian distributions [24,26]:

P (L1, L2) = C
∑N

k=1
Cke

−0.5

(
(L1−L̄1k)2

�2
1k

+ (L2−L̄2k)2

�2
2k

+ (L3−L̄3k)2

�2
3k

)
. (8)

Note that other distributions can be used. C is a constant used to
normalize the distribution. �i,k and L̄i,k are the standard deviation
and the mean value of Li of the kth Gaussian term, respectively.
L̄1,k, L̄2,k and L̄3,k are linked together by Eq. (6). The relative volume
fraction fk attributed to the kth Gaussian term is defined by:

fk = fCCk. (9)

2.2 L2, P2 and r2 spaces

By considering the Bohren convention [21] (L1 ≤ L2 ≤ L3), we
can define a two dimensional depolarization space (L2) in which
each NP shape is represented by an unique point M(L1, L2) (Fig. 1a).
In this space, the normalized distribution of NP depolarization
factors P(L1, L2) is correlated to the NPs shape distribution. As
an example, the locus of spherical, oblate and prolate NPs are
L1 = L2 = 1/3, L1 = L2 and L2 = 0.5–0.5L1, respectively. However, the
quantitative description of nanoparticle shape distribution and the
numerical calculation of the integral of Eq. (5) remain difficult in
this physical space. As shown in Fig. 1a, each point M of the L2 space
is included in a ABC triangle. Thus, the vector AM must respect the
following relationship:

AM =
(

1 − Pp

)
AB + (1 − Po)

(
1 − Pp

)
BC. (10)

Where 0 ≤ Po ≤ 1 and 0 ≤ Pp ≤ 1. Each point M(L1, L2) can be rep-
resented by a new set of coordinates (P0, Pp) in a two dimensional
orthonormal space (P2) (Fig. 1b). The (L1, L2) coordinates are related
to the (P1, P2) coordinates thanks to the following transformations:

L1 =
(1 − Po)

(
1 − Pp

)
3

. (11)

L2 =
(

1 − Pp

)
2

−
(1 − Po)

(
1 − Pp

)
6

(12)

The locus of oblate, prolate or spherical NPs in P2 are (0, Pp),
(Po, 0) and (0, 0), respectively. In other words, Po and Pp traduce



Download English Version:

https://daneshyari.com/en/article/5347698

Download Persian Version:

https://daneshyari.com/article/5347698

Daneshyari.com

https://daneshyari.com/en/article/5347698
https://daneshyari.com/article/5347698
https://daneshyari.com

