Accepted Manuscript

Title: Ellipsometric characterization of MoSe₂ thin layers obtained by thermal treatment of molybdenum in selenium vapor

Authors: Ayaz Bayramov, Yegana Aliyeva, Gurban Eyyubov, Eldar Mammadov, Zakir Jahangirli, Daniel Lincot, Nazim Mamedov

PII: S0169-4332(17)30165-4

DOI: http://dx.doi.org/doi:10.1016/j.apsusc.2017.01.153

Reference: APSUSC 34948

To appear in: APSUSC

Received date: 31-7-2016 Revised date: 18-12-2016 Accepted date: 16-1-2017

Please cite this article as: Ayaz Bayramov, Yegana Aliyeva, Gurban Eyyubov, Eldar Mammadov, Zakir Jahangirli, Daniel Lincot, Nazim Mamedov, Ellipsometric characterization of MoSe2 thin layers obtained by thermal treatment of molybdenum in selenium vapor, Applied Surface Science http://dx.doi.org/10.1016/j.apsusc.2017.01.153

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Ellipsometric characterization of MoSe₂ thin layers obtained by thermal treatment of molybdenum in selenium vapor.

Ayaz Bayramov^a, Yegana Aliyeva^a, Gurban Eyyubov^a, Eldar Mammadov^a, Zakir Jahangirli^a, Daniel Lincot^b, Nazim Mamedov^a

^aInstitute of Physics, Azerbaijan National Academy of Sciences, H. Javid ave.131, AZ1143 Baku, Azerbaijan

^bInstitut de Recherche et Développement sur l'Energie Photovoltaïque (IRDEP), 6 quai Watier, 78401 CHATOU Cedex, Paris, France

Highlights

- MoSe₂ layers are obtained by thermal treatment of molybdenum in selenium vapor.
- Spectroscopic ellipsometry is applied to the obtained layers and MoSe₂ target.
- Electronic band structure of MoSe₂ is calculated and dielectric function is derived.
- Calculated and ellipsometry-based data on dielectric function agree fairly well.
- Excitonic transitions are assumed to form the dielectric function at around 1 eV.

Download English Version:

https://daneshyari.com/en/article/5347699

Download Persian Version:

https://daneshyari.com/article/5347699

<u>Daneshyari.com</u>