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a  b  s  t  r  a  c  t

In  the  field  of optical  metrology,  the  selection  of  the  best  model  to fit  experimental  data  is absolutely
nontrivial  problem.  In  practice,  this  is  a very  subjective  and  formidable  task  which  highly  depends  on
metrology  expert  opinion.  In  this  paper,  we propose  a systematic  approach  to  model  selection  in  ellip-
sometric  data  analysis.  We  apply  two  well-established  statistical  methods  for  model  selection,  namely,
the  Akaike  (AIC)  and  Bayesian  (BIC)  Information  Criteria,  to  compare  different  dispersion  models  with
various  complexities  and  objectively  determine  the  “best”  one  from  a  set  of  candidate  models.  The infor-
mation  criteria  suggest  the  most  optimal  way  to quantify  the  balance  between  goodness  of  fit  and  model
complexity.  In combination  with  screening-type  parametric  sensitivity  analysis  based  on  so-called  “ele-
mentary  effects”  (the  Morris  method)  this  approach  allows  to  compare  and  rate  various  models,  identify
key model  parameters  and  significantly  enhance  process  of  ellipsometric  measurements  evaluation.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In spite of the well-known fact that the area of optical metrology
in the semiconductor manufacturing industry is, typically, lagging
behind the progression of the process tools (lithography, deposi-
tion, etch, etc.), spectroscopic ellipsometry as a method of choice
for multiple in-line measurements has been evolving thereby pro-
viding the practitioners new capabilities for characterization of
materials and structures as well as advanced process control [1–3].
One of the benefits of such progress is a full scope of material
dispersion models available in modern ellipsometric data analysis
software for production-grade spectroscopic ellipsometers previ-
ously accessible in research ellipsometers only. There are numerous
dielectric function parameterizations which can be applied to vari-
ous types of materials [4–7]. However, such abundance of available
dispersion models would be the scholarly user’s “a true paradise”
but rather great perplexity and confusion for the “typical” industrial
ellipsometry users. Here we come to a ubiquitous model selection
problem which is the task of choosing a model of optimal com-
plexity from a set of potential (or candidate) models based on a
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finite set of available experimental (training) data. The situation
has been well reflected by Herzinger et al. [8]: “When perform-
ing a model dependent data analysis, simple models are preferable
to complex ones if the fit quality is the same. . . The difficulty is
in objectively evaluating the as each model complication is added
to see if the fit really improved. Of course, if the fit does not get
better with increasing complexity, that does not mean the com-
plex model is necessarily wrong, but it does mean that one lacks
sensitivity to allow a distinction and some other criteria must be
employed.” Here, by the concept of rising complexity we  mean both
the number of variable parameters as well as the model structure as
induced by a given functional form of used dispersion model and/or
possible structural modifications such as interfaces between lay-
ers, roughness, grading, anisotropy, etc. Another important remark
regarding model selection in ellipsometric data analysis has been
made by Vedam in Ref. [9]: “The selection of the final model is based
on the simultaneous fulfilment of the following five criteria: (i) a
physically realistic model; (ii) a low value of � the unbiased esti-
mator of the mean square deviation; (iii) good agreement between
the calculated and the observed [cos �(�), tan �(�)] spectra over
the entire spectral region studied; (iv) reasonably low values of the
confidence limits of the variable parameters; and (v) acceptably low
values of the cross-correlation coefficients between the evaluated
parameters. Of course, too many fitting parameters or correlated
parameters result in drastic increases in the confidence limits and
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thus LRA [the least-squares regression analysis] must include a
check against any tendency to add parameters indiscriminately
just for the sake of reducing mean squares deviation.”

Model selection problem is closely related to two  commonly
used concepts such as overfitting and underfitting of data. Over-
fitting typically occurs if a very (too) flexible model, for instance,
a model with excessive number of variables, is used to describe
measured data. As John von Neumann famously pointed out that
“. . .with four parameters I can fit an elephant, and with five I can
make him wiggle his trunk.” [10].1 Specifically, too much flexi-
ble model will fit even the noise in the data, i.e., just the training
dataset will be described perfectly. As a result of that, the estima-
tions of model parameters will contain uncontrollable errors and
the model will provide misleading predictions for new data [12].
In other words, despite the fact that we improve the fit by adding
parameters to the model, meanwhile the estimations of parameters
get worse since there are less data (or information) per parame-
ter. On the contrary, an excessively simple model with only a few
variables may  produce an underfitting and, therefore, does not fit
neither the training data nor new ones. Ideally, the best model
should have an optimal balance between under- and overfitting,
i.e., adequately fit measured ellipsometric data and provide reliable
and unambiguous predictions while using the fewest parameters.
But, as many practitioners know, this task is very difficult to do in
practice and systematic approach is desperately needed to put the
model selection in ellipsometric data analysis on a solid foundation.

This problem can be addressed by applying various statistical
information criteria (IC) for model selection. The information cri-
teria approach has been extensively applied in other fields. Over
the last few decades, a couple of those criteria, namely, Akaike
information criterion (AIC) [13,14] and Bayesian information cri-
terion (BIC) [15] have become very popular and important tools
in comparing and selecting models. AIC was established in the
early 1970s and it is based on the information-theoretic frame-
work [16–18]. BIC was introduced by Schwarz in the late seventies
(sometimes also referred as Schwarz or SIC criterion) and it is
not related to the information-theoretic approach but rather was
named by analogy with AIC. AIC and BIC can be easily computed
from most standard software outputs and are extensively used in
data analysis. The information criteria quantify how experimental
data support different models with various complexities and settle
trade-off between data under- and overfitting. Usually, depending
on parameter sensitivity, the introduction of additional parameters
will improve model’s fit to the data and the estimator of the good-
ness of fit will favour, among competing models, the model with
the higher complexity (i.e., with the most parameters). However,
the information criteria contain a penalty which controls overfit-
ting, select the model that best balances under- and overfitting and,
thus, determine an optimal number of parameters in the model.
Of course, the use of IC is not a panacea and they do not iden-
tify the “true” or “final” model, – they select the best one for the
given data from the set of candidate models. As well put by George
Box et al. in Ref. [19,p. 440], “The most that can be expected from
any model is that it can supply a useful approximation to real-
ity: All models are wrong; some models are useful.” Moreover,
a lesson learnt from our previous study [20] shows that purely
statistical model-selection scenario sometimes may  not be persua-
sive enough since the information criteria do not take into account
underlying physical meanings and technological aspects which are
also highly important in ellipsometric measurement evaluations.

1 As a matter of fact, it has been shown by Mayer et al. [11] that von Neumann’s
statement is actually correct and it is possible to reconstruct an elephantine shape
with four complex parameters and even have a wiggling trunk by using the real part
of the fifth parameter.

Incidentally, as has been noted by Yin and van Enk in Ref. [21],
the usefulness of the information criteria approach in physical sci-
ence and applications, where we typically know underlying model,
lies mainly in ability to restrict number of model parameters and
prevent overfitting. Yet, this is not a case for spectroscopic ellipsom-
etry where we, typically, have a choice of physics-based dispersion
models to describe a particular thin film.

In general, model selection often represents just a first step
in spectroscopic ellipsometry data analysis. After that, we should
continue with parametric sensitivity analysis (SA) [22–24] on
the chosen model to evaluate relative importance of various
model parameters. One of the most common and preferred
by practitioners SA methods is based on “one-at-a-time” or
“one-factor-at-a-time” (OAT/OFAT or “local”) approach. OAT/OFAT
estimates parameter sensitivity by evaluating model output
changes while perturbing one parameter at a time by small amount
and holding all other parameters fixed at their nominal values.
After that, the parameter’s value is restored to its original numeri-
cal value. This procedure, repeated for each parameter of interest,
allows one to identify influential model parameters and rank them
accordingly. However, it implies that the OAT/OFAT approach uses
very restricted range of the input parameter variations around
baseline and neglects possible parameters interactions. Therefore,
in practice, good SA technique should estimate the effect one of the
parameters of interest while all the others are allowed to float as
well [25,26]. As it turns out, such an approach does exist and known
as “Elementary Effect” (EE) method (or, the Morris method) and was
proven to be an effective screening-type technique [27–32]. The EE
method allows estimation of overall significance for each model
parameter and describes its non-linear effect on model’s output
and/or interactions with other parameters.

The main purpose of this paper is to demonstrate how the infor-
mation criteria approach and screening elementary effect method
can be used together to select the most proper model and its opti-
mal  parameterization, reduce parameter uncertainties and classify
model parameters according to their relative importance for the
optical model output. Accurate and detailed consideration of all
model-forming factors is an extremely complex undertaking. In
this paper, we limit ourselves only to dispersion model selection
assuming that an appropriate structural modeling has been already
done based on a knowledge of involved processes and/or reference
metrology. We  show by example that the AIC and BIC model-
selection procedures in combination with the EE method help to
quantify the evidence for or against various dispersion models and
determine relative importance of various model factors influencing
an accuracy of ellipsometric data analysis.

2. A brief overview of the methodology

2.1. AIC and BIC

A typical non-linear least-squares data fitting problem can be
mathematically abstracted as follows: we  fit n experimental data
points yi, i = 1,. . .,n, taken with some error at different values of
independent variable x, by m different functional relations (candi-
date models) fj(xi|�̂), j = 1, ..., m, where �̂ = (p1,. . .,pk) is the vector
of model parameters:

yi = fj(xi|�̂) + �i, (1)

where �i are random variables assumed to be normally distributed
with zero mean and uncertainty �, N(0,�2). Then an appropri-
ate optimization algorithm applies to minimize the sum of the
weighted squares of the residuals between the measured yi and
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