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a  b  s  t  r  a  c  t

Spectroscopic  ellipsometry  is currently  widely  used  to describe  the polarimetric  response  of  structured
media.  The  conceptional  shortcomings  of  the  commonly  used  Fresnel  approach  to  predict  and  simulate
ellipsometric  data  of  structured  media  is  discussed  using  numerical  solutions  of Maxwell’s  equations.
Fresnel’s  relations  and  Snell’s  law  are, strictly  speaking,  not  valid  anymore.  We explain  via  simple  physical
models  the  effects  occurring  at  non-horizontal  interfaces  between  different  materials.  At such  interfaces,
evanescent  fields  occur  and  modify  the  still well  defined  complex  reflectivities  for  s-  and  p-polarization.
When  the  field  vector  projected  on  the  sample  surface  is neither  parallel  nor  perpendicular  to  the  inter-
face,  the  fields  for s-  and p-polarization  couple  and  cross-polarization  arises  from  the  different  spatial
behavior  of  the evanescent  fields.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Spectroscopic ellipsometry (SE) is increasingly used to describe
the polarimetric response of structured media, especially for crit-
ical dimension analysis [1]. It proves highly useful as a tool for
nondestructive analysis, although the evaluation relies heavily on
numerical techniques for solving Maxwell equations with e.g. finite
elements (FEM, e.g. Ref. [2]) or, for periodic sample structures, with
Fourier based techniques such as rigorous coupled wave analysis
(RCWA). Even though the mathematics of solving Maxwell’s equa-
tions numerically is well established, the understanding of physical
processes arising at structured samples is not well understood. In
purely stratified layers with in-plane homogeneity, the well known
Fresnel relations are used to describe the polarimetric response.
For non-horizontal material interfaces – grating structures and
roughness also constitute non-horizontal interfaces between two
materials – no general analytic solutions exist. In order to discuss
the effects of these interfaces, we start with Maxwell’s equations
and their continuity requirements.

Optics of materials is generally described by the macroscopic
Maxwell equations, in their differential form:
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where �E represents the macroscopic electric field, �D the macro-
scopic electric displacement field, �H the magnetic field strength
and �B the magnetization in SI representation. The behavior can be
altered by the presence of free charges and current densities, �
and �J respectively. At optical frequencies however, such effects are
usually considered negligible. We  emphasize macroscopic, because
these macroscopic electric fields are obtained by averaging over
rather many unit cells of the solid and they are related to the
wavelength of the incoming light. In addition, constitutive rela-
tions are needed to relate the fields �D and �E.  The magnetic terms
are related by �B = �0�(ω) �H with the relative permeability �(ω) = 1
in the optical regime. Using a linear and local constitutive rela-
tion �D = ε0ε(ω)�E, it is possible to decouple the fields by rewriting
the Maxwell equations into Helmholtz equations considering the
harmonic solutions. However, if there are two different materi-
als present, the permittivity formally becomes position dependent:
ε = ε(ω, �r). This immediately shows that a simple plane wave can-
not be a solution anymore. This in-plane position dependence also
implies the invalidity of Snell’s and Fresnel’s law, which derivations
require in-plane homogeneity.

If we  employ constitutive relations at an interface between two
media (e.g. Au and Si) we make errors from a quantum mechan-
ical point of view: within a small region of ∼ 5–10 atomic layers
on both sides of the interface, the permittivity also depends on the
distance to the interface (i.e. ε(ω, �r, �r′)) but, beyond these 5–10 lay-
ers, the material will again be homogeneous and isotropic in the
macroscopic Maxwell relations. However, this interface or surface
effects are negligible by replacing (in a very good approximation)
the “true”, but unknown position dependent permittivity by the
“bulk” permittivity for solving the Maxwell equations.
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Although ε(ω, �r) is discontinuous at these interfaces, certain
components of the macroscopic Maxwell equations have to be
continuous at all points in space, including at such interfaces; these
boundary conditions are derived from the integral formulation of
Maxwell’s equations:

�E(1)
‖ = �E(2)

‖ �D(1)
⊥ = �D(2)

⊥

�H(1)
‖ = �H(2)
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⊥

Fresnel equations and Snell’s laws can be derived only for pla-
nar and in-plane homogeneous samples. One has to keep in mind
that their derivation uses the assumption of a planar interface sepa-
rating two in-plane homogeneous isotropic bulk regions. The term
“in-plane homogeneity” refers here to the condition that an arbi-
trary translation along the surface does not change the physics. In
other words, the Fresnel equations rely on translational invariance
along the surface and therefore are only correct for homogeneous
samples. As a side remark, we mention that although materials are
structured by atoms, homogenization works well as atomic dis-
tances a are much smaller a 	 � compared to the wavelength in
the material – in the order of ∼10−3 [3].

Therefore, the Fresnel approach cannot be used to describe
inhomogeneous samples (e.g. structured planar or etched Si grat-
ings) with in-plane position dependent dielectric function such as
diffractive structures usually described by a (stepwise) ε(�r).

Similarly, great care must be taken when applying Snell’s
law and the law of reflection, and the continuity of the tan-
gential component of the wave vector �k‖. The direction of the
reflected/transmitted light of a grating cannot be described by
a single wave vector �k any more; there are now infinitely
many �kr , �kt vectors reflected/transmitted, some of them prop-
agating, some of them evanescent. Snell’s law is equivalent to
the requirement of continuity of �k‖. Because Snell’s law fails in
structured samples, this often used condition on the continuity
of �k‖ is also void. What remains valid however, are the con-
tinuity relations of the respective components of the �D and �E
fields. In this paper, we aim to provide throughout a few exam-
ples a physical interpretation – supported by a simple simulation
setup – of what happens at interfaces in structured surfaces
and why care must be taken when using the effective medium
approach in ellipsometric modeling of inhomogeneous, structured
samples.

2. Methods

We  use the rigorous coupled wave analysis (RCWA) semi-
analytical method [4–6] in conical diffraction [7] implemented in
Reticolo [8] for calculating the reflection coefficients, intensity pat-
terns and field distribution [9]. RCWA has a worse convergence
than finite elements for most problems; however, it yields a good
physical picture for explaining phenomena occurring at vertical
interfaces, because it is compatible with the familiar “diffraction
effects” picture.

The following one dimensional setup is considered (see Fig. 1):
a silicon substrate is periodically structured on its surface with
200 nm deep trenches filled with gold in the x direction and
infinitely extended in the y direction. The structure is illuminated
by a harmonic plane wave with given polarization at a 45◦ polar
angle denoted by �. The azimuthal angle ϕ is varied in the different
simulations. Setups for which the grating vector is not contained
in the plane of incidence are termed conical diffraction. Gold has a
penetration depth in the order of 20 nm at the selected wavelength
�0 = 500 nm,  therefore the contributions of the reflections arising
at the lower gold-silicon horizontal interface are small. Similarly,
the width of the trenches as well as the periodic length are chosen
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Fig. 1. Simulation setup; a 1-dimensional silicon/gold grating on silicon substrate
is  under plane wave illumination in conical mounting.

wide enough (10 �m)  to strongly suppress the effect of neighboring
structures on the total field.

Because the periodic length is large compared to the wave-
length, a large number of harmonics is necessary for the solution
to converge. This being said, the simple nature of the structure and
the use of symmetries allows a rather fast computation of those.
Simulations were performed using harmonics in the [−800;800]
range. As a first test criterion, we  use the convergence of the
reflected intensity when increasing the number of harmonics.
With the selected number of harmonics, the relative difference

(n) = (eff[n] − eff[n − 1])/eff[n − 1] is smaller than 10−6 for both the
s- and p-polarizations, p-being known to converge slower. Here,
n = 800 is the limit to the number of harmonics and eff[n] the related
efficiency. The relative difference for each reflected diffracted order
are also below 10−6. For transparent samples, one can use the
energy conservation that the sum of transmitted and reflected ener-
gies equals the incident energy.

Firstly, we  have to mention that any Maxwell solver calculates
the total field distribution. In ellipsometry we  are used to think-
ing of superposing incident and reflected fields and in the next
paragraph we  explain how to separate them. The total field dis-
tribution will be shown in the vicinity of a silicon/gold interface
at the surface at and compared to the well-known Fresnel result
one has in mind. With “Fresnel result” we refer to an “effective
setup”, where half of the sample consists of infinitely extended Si,
the other half of infinitely extended Au, and the reflected fields
are superimposed, as if a linear combination would provide a cor-
rect description. Secondly, the Jones reflection matrix for such a
setup will be computed for various azimuthal angles to relate
the effects to ellipsometric measurements. RCWA (and FEM) as a
numerical technique delivers for each component i the position
dependent total field components E(i)(x, y, z, t = 0) for all space
points, either real or complex. The time dependence may  then
be incorporated into the result by multiplying with the harmonic
oscillation.

The Jones matrix terms rss, rps, rsp and rpp are calculated numer-
ically from the s- and p-scattered and incident field contributions
over one period in the 0th order diffraction angle (i.e. specular
reflection). As a side comment we mention that RCWA also allows
to calculate the polarization response of any other diffracted order;
this is naturally strongly wavelength dependent.

Because the reflected field, as well as the total electric field,
becomes position dependent for an inhomogeneous sample – in
addition to the phase factor �k · �r – the modified Fresnel coefficient
rab (a, b ∈ {s, p}) where a and b are respectively the incident and
reflected polarizations is also position dependent. Considering r(x)
as the ratio of the complex reflected field Er(x, y = 0, z = 0+) to the
incident field Ei(x, y = 0, z = 0+) at a given position of the surface,
averaging over the unit cell, indicated by 〈 · 〉, yields the measured
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