Accepted Manuscript

Title: Drag reduction using metallic engineered surfaces with highly ordered hierarchical topographies: nanostructures on micro-riblets

Author: Taekyung Kim Ryung Shin Myungki Jung Jinhyung Lee Changsu Park Shinill Kang

PII: S0169-4332(16)30010-1

DOI: http://dx.doi.org/doi:10.1016/j.apsusc.2016.01.161

Reference: APSUSC 32393

To appear in: APSUSC

 Received date:
 23-6-2015

 Revised date:
 27-11-2015

 Accepted date:
 18-1-2016

Please cite this article as: T. Kim, R. Shin, M. Jung, J. Lee, C. Park, S. Kang, Drag reduction using metallic engineered surfaces with highly ordered hierarchical topographies: nanostructures on micro-riblets, *Applied Surface Science* (2016), http://dx.doi.org/10.1016/j.apsusc.2016.01.161

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Title Drag reduction using metallic engineered surfaces with highly ordered hierarchical topographies: nanostructures on micro-riblets

Taekyung Kim a, c, Ryung Shin a, c, Myungki Jung a, c, Jinhyung Lee a, c, Changsu Park b, Shinill Kang a, c, *

^a Nano Fabrication and Micro Optics National Research Laboratory, Seoul, 120-749, Korea

^b Yonsei Institute of Integrated Engineering Technology, Seoul, 120-749, Korea

^c School of Mechanical Engineering, Yonsei University, Seoul, 120-749, Korea

*Corresponding author at: Yonsei University, Mechanical Engineering, 50, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea. Tel.: +82-2-2123-2829; fax: +82-2-362-2736.

E-mail: snlkang@yonsei.ac.kr

Abstract

Durable drag-reduction surfaces have recently received much attention, due to energysaving and power-consumption issues associated with harsh environment applications, such as those experienced by piping infrastructure, ships, aviation, underwater vehicles, and high-speed ground vehicles. In this study, a durable, metallic surface with highly ordered hierarchical structures was used to enhance drag-reduction properties, by combining two passive drag-reduction strategies: an air-layer effect induced by nanostructures and secondary vortex generation by micro-riblet structures. The nanostructures and micro-riblet structures were designed to increase slip length. The top-down fabrication method used to form the metallic hierarchical structures combined laser interference lithography, photolithography, thermal reflow, nanoimprinting, and pulse-reverse-current electrochemical deposition. The surfaces were formed from nickel, which has high hardness and corrosion resistance, making it suitable for use in harsh environments. The drag-reduction properties of various metal surfaces were investigated based on the surface structure: a bare surface, a nanostructured surface, a

Download English Version:

https://daneshyari.com/en/article/5347895

Download Persian Version:

https://daneshyari.com/article/5347895

Daneshyari.com