Contents lists available at ScienceDirect

Applied Surface Science

journal homepage: www.elsevier.com/locate/apsusc

The influence of pH values on the existing states of In and B ions in TiO_2

Shaolong Huang^a, Yanlong Yu^a, Wenjun Zheng^{b,**}, Chunling Zhang^a, Yaan Cao^{a,*}

^a MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China ^b Department of Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China

ARTICLE INFO

Article history: Received 13 October 2015 Received in revised form 28 December 2015 Accepted 1 January 2016 Available online 4 January 2016

Keywords: pH value Sol-gel method Existing states Transition mechanism

1. Introduction

TiO₂ has been extensively investigated owing to its wide applications, such as photocatalysis, photosynthesis and photoelectronconversion [1–5]. However, due to the large band gap, it is still limited for TiO₂ to be applied for practical application under solar irradiation [2,6]. Doping TiO₂ with metal or nonmetal elements is considered to be one of the most efficient methods to make full use of solar light [7–16]. For example, B doped TiO₂ and In doped TiO₂ had attracted lots of attention in recent years. Zhao et al. reported that doping B ions in TiO₂ could narrow band gap and extend the absorption into the visible region [17]. Su et al. found that the doped B ions would retard the phase transition from anatase to rutile and exhibit enhanced photocatalytic activity under visible light irradiation [18,19].

Our previous work reported that a kind of unique surface O-In-Cl_x species was formed on the surface of TiO₂ [20]. Yu et al. investigated the existing states of In and B ions in TiO₂ and their energy levels [21]. Besides, Yu et al. also reported the band structure of N-TiO₂/InBO₃ heterostructure [22]. However, there are few reports about the influence of pH values on the structures of In and

ABSTRACT

A series of In and B co-doped TiO_2 samples are prepared by sol-gel method under different pH values. The detailed existing states of introduced In and B ions are investigated via XRD, FT-IR, XPS and HRTEM. It is found that the B ions are mainly doped into TiO_2 in interstitial mode and In ions exist as surface O-In-Cl_x species when the pH values are in the range of $0.31 \sim 0.65$. With the increase of the pH values ($0.82 \sim 3.40$), the introduced In and B ions would react with each other to form InBO₃. The existing states of In and B ions in TiO_2 can be easily changed by adjusting the pH values to achieve a new type of TiO_2 based materials with controlled structures.

© 2016 Elsevier B.V. All rights reserved.

B co-doped TiO₂, and the existing states of In and B ions under different pH values. Therefore, it is expected to prepare a new type of TiO₂ doped with In and B ions with controlled structures via sol–gel method by simply adjusting the pH values.

Herein, a series of TiO_2 samples doped with In and B ions were prepared via a one-step sol-gel method under different pH values. The structures, existing states and their transform relationship of In and B ions in TiO_2 system were investigated in details. The transform mechanism of the existing states for In and B ions was also studied.

2. Experimental details

2.1. Catalyst preparation

The In and B ions co-doped TiO₂ nanoparticles were prepared by a simple one-step sol-gel method. In ice bath, 7.1 mL of InCl₃ solution (0.73 M) and 240 mg of H₃BO₃ was mixed with 40 mL of anhydrous ethanol under vigorous stirring. Then 12 mL of tetrabutyl titanate was added dropwise into the mixed solution. Different amount of concentrated HCl solution (12 M) were added into the mixture to adjust the pH values. The obtained sol was stirred continuously until the formation of gel, and then aged for 24 h at room temperature. The gel was dried at 100 °C for 10 h, and then calcined at 450 °C for 2.5 h. The obtained TiO₂ based samples with the different pH values are denominated as In-B-TiO₂ pHx, and x is increasing pH from 0.31 to 3.40 (Table 1)

CrossMark

^{*} Corresponding author. Tel.: +86 22 66229431.

^{**} Corresponding author. Tel.: +86 22 23507951.

E-mail addresses: zhwj@nankai.edu.cn (W. Zheng), caoya@nankai.edu.cn (Y. Cao).

264

Details of In-B-TiO₂ pHx samples.

Samples	InCl ₃ solution (0.73 M)/mL	H ₃ BO ₃ /mg	Ti(OC ₄ H ₉) ₄ /mL	HCl (12 M)/mL
In-B-TiO ₂ pH0.31	7.1	240	12	1.1
In-B-TiO ₂ pH0.44	7.1	240	12	1.0
In-B-TiO ₂ pH0.53	7.1	240	12	0.9
In-B-TiO ₂ pH0.65	7.1	240	12	0.8
In-B-TiO ₂ pH0.82	7.1	240	12	0.6
In-B-TiO ₂ pH1.00	7.1	240	12	0.4
In-B-TiO ₂ pH1.21	7.1	240	12	0.2
In-B-TiO ₂ pH3.40	7.1	240	12	-

 $(\ln/(\ln + Ti) = 12.8\%, B/(B + Ti) = 10\%)$. For comparison, Pure TiO₂, In-TiO₂ and B-TiO₂ powders were also prepared using the same procedure with or without the relative precursors. Pure indium borate powder (InBO₃) was prepared by a sol–gel method as we reported [23]. All chemicals used were of analytical grade and water was deionized water (>18.2 M Ω cm⁻¹).

2.2. Characterization

X-ray diffraction (XRD) patterns were collected on a Rigaku D/max 2500 X-ray diffraction spectrometer (Cu Ka, λ = 1.54056 Å). The crystal size was calculated using Scherrer equation $(D = k\lambda/B\cos\theta)$. The Fourier Transform Infra-Red (FT-IR) spectra were recorded for KBr disks containing the powder sample with an FT-IR spectrometer (MAGNA-560). X-ray photoelectron spectroscopy (XPS) measurements were carried out with an ESCA Lab 220i-XL spectrometer by using an unmonochromated Al $K\alpha$ (1486.6 eV) X-ray source. All of the spectra were calibrated to the binding energy of the adventitious C1s peak at 284.8 eV. Transmission electron microscopy (TEM) and high resolution TEM (HRTEM) analyses were conducted using a JEM-2010FEF, for which the samples were prepared by applying a drop of ethanol suspension onto an amorphous carbon-coated copper grid and dried naturally. The pH values in this work were measured by Model PHS-25 Meter.

3. Results and discussion

3.1. Structures of In-B-TiO₂ pHx

To investigate the crystal structures of the obtained samples, XRD technique was used. Fig. 1 shows the XRD patterns of pure TiO_2 , In- TiO_2 , B- TiO_2 , In-B- TiO_2 pHx and InBO₃ samples. Pure TiO_2 exhibits a typical anatase structure [12]. In case of In- TiO_2 and B- TiO_2 , they still remain anatase phase [20]. For In-B- TiO_2 pHx

Fig. 1. XRD patterns of TiO₂, In-TiO₂, B-TiO₂, In-B-TiO₂ pHx and InBO₃ samples.

al	ble	2	

The lattice parameters, cell volume and crystal size of all samples.

Sample	Cell para	meters (Å)	Cell volume	Crystallite
	a = b	С	(A ³)	size (nm)
Pure TiO ₂	3.789	9.498	136.40	10
In-TiO ₂	3.789	9.499	136.39	9.5
B-TiO ₂	3.808	9.575	138.84	4.5
In-B-TiO ₂ pH0.31	3.805	9.585	138.77	2.8
In-B-TiO ₂ pH0.44	3.801	9.586	138.50	3.6
In-B-TiO ₂ pH0.53	3.798	9.576	138.13	4.3
In-B-TiO ₂ pH0.65	3.800	9.523	137.51	4.5
In-B-TiO ₂ pH0.82	3.795	9.524	137.17	4.7
In-B-TiO ₂ pH1.00	3.793	9.547	136.85	5.0
In-B-TiO ₂ pH1.21	3.797	9.471	136.55	5.7
In-B-TiO ₂ pH3.40	3.791	9.498	136.50	6.5

samples, only anatase is observed when the pH values increase from 0.31 to 0.65. For In-B-TiO₂ pH0.82 sample, besides the anatase peaks, a few new diffraction peaks at 24.3°, 31.6°, 37.4°, 45.0° and 51.9° are found, corresponding to (102), (104), (110), (202) and (116) crystal planes of InBO₃ [23,24], respectively. This indicates that a small amount of InBO₃ is formed in the In-B-TiO₂ pH0.82 sample when the pH value is 0.82. Furthermore, the peak intensities of InBO₃ increase with the increase of the pH values from 0.82 to 3.40, suggesting the increase of pH values is benefit to the formation of InBO₃ for In-B-TiO₂ pHx samples. There is no other characteristic diffraction peaks (such as InCl₃, B₂O₃) detected for all samples. The XRD patterns are used to determine the lattice parameters, cell volume and crystal size of samples by Scherrer equation $(D = k\lambda/B\cos\theta)$, which are summarized in Table 2. It is found that the lattice parameters and cell volume of In-TiO₂ are almost the same as those of pure TiO₂, which suggesting In ions are not doped into TiO₂ lattice. Most likely, it has been demonstrated by our previous works that the In links with O and Cl to form O-In-Cl_x (x = 1 or 2) species on the surface of TiO₂ [20]. Moreover, compared with pure TiO₂, the lattice parameters and cell volume of B-TiO₂ increase, implying B ions are doped into TiO₂ lattice in interstitial mode [25]. Compared with B-TiO₂, the lattice parameters and cell volume remain almost unchanged after the addition of In ions for In-B-TiO₂ pH0.31 sample, implying that the B ions are still doped into TiO₂ lattice in interstitial mode and the In ions might exist as unique surface O-In-Cl_x species. For In-B-TiO₂ pHx samples, the crystal sizes of all samples are smaller than that of pure TiO₂, suggesting that the introduction of In and B ions could inhibit the grain growth of TiO₂ effectively because of dissimilar boundaries [21]. In addition, with the increase of pH values, the lattice parameters and cell volume decrease gradually while the crystal size of increases, accompanied with the occurrence of InBO₃ which further become stronger (Fig. 1) for In-B-TiO₂ pHx samples. These results imply the transition of the existing states for In and Bions in TiO₂ from doping mode to InBO₃ with the increase of pH values in preparation process. The chemical states and the doping mode of In and B ions for In-B-TiO₂ pHx will be confirmed by FT-IR, HRTEM and XPS.

3.2. Existing states of In and B ions in In-B-TiO₂ pHx

3.2.1. FT-IR

Fig. 2 shows FT-IR spectra of TiO₂, In-TiO₂, B-TiO₂, In-B-TiO₂ pHx and InBO₃. The bands at about 3430 cm⁻¹ and 1630 cm⁻¹ were assigned to stretching vibration and the bending vibration of H₂O adsorbed on TiO₂ surface, respectively [26]. For B-TiO₂ sample, the band at about 1340 cm⁻¹ was assigned to the B-O stretching vibrations of interstitial doped B (B links with three O atoms) in TiO₂ [19,27]. The band at about 1240 cm⁻¹ was assigned to the B-O stretching vibrations of [BO₃] unit in the InBO₃ [28]. Furthermore,

Download English Version:

https://daneshyari.com/en/article/5348060

Download Persian Version:

https://daneshyari.com/article/5348060

Daneshyari.com