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The ridge logistic regression has successfully been used in text categorization problems and it has been
shown to reach the same performance as the Support Vector Machine but with the main advantage of
computing a probability value rather than a score. However, the dense solution of the ridge makes its
use unpractical for large scale categorization. On the other side, LASSO regularization is able to produce
sparse solutions but its performance is dominated by the ridge when the number of features is larger than
the number of observations and/or when the features are highly correlated. In this paper, we propose a
new model selection method which tries to approach the ridge solution by a sparse solution. The method
first computes the ridge solution and then performs feature selection. The experimental evaluations show
that our method gives a solution which is a good trade-off between the ridge and LASSO solutions.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The automatic text categorization problem consists in assign-
ing, according to its content, a textual document to one or more
relevant predefined categories. Given a training dataset, where
the documents have been manually labeled, the problem lies in
inducing a function f, from the training data, which can then be
used to classify documents. Machine learning algorithms are used
to find the optimal f by solving a minimization problem which can
be stated as the minimization of the cost of misclassification over
the training dataset (Empirical Risk Minimization).

In order to use numerical machine learning algorithm, the Vec-
tor Space Model is commonly used to represent a textual docu-
ments by a simple term-frequency vector (Salton et al., 1975).
This representation produces datasets in which (1) the number of
features is often larger than the number of documents, (2) the vec-
tors are very sparse, i.e., a lot of features are set to zero and (3) the
features are highly correlated (due to the nature of natural lan-
guages). Moreover, real-life datasets tend to be larger and larger
which makes the automatic categorization process complicated
and leads to scalability problems. As long as the datasets only grow
in terms of the number of observations, the problem can be tackled
by distributing the computation over a network of processors (Chu
et al, 2006). However, when the number of features becomes
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larger than the number of observations, machine learning tech-
niques tend to perform poorly due to overfitting, i.e., the model
performs well on the training set but poorly on any other set. To
prevent overfitting, the complexity of the model must be con-
trolled during the training process, through model selection tech-
niques. In the Support Vector Machine (SVM) algorithm (Vapnik,
1995), the model complexity is given by the VC-dimension, which
is the maximum number of vectors, for any combination of labels,
that can be shattered by the model. SVMs rely on the Structural
Risk Minimization (SRM) principle, which not only aims at mini-
mizing the empirical risk (Empirical Risk Minimization - ERM)
but also the VC-dimension. SVMs have been used for text categori-
zation and their performance is among the best ones obtained so
far (Joachims, 1998).

The VC-dimension remaining unknown for many functions, the
SRM is difficult to implement. Another model selection, widely
used, is to minimize both the ERM and a regularization term:
2Q[f] where / is a penalty factor, Q[f] a convex non-negative reg-
ularization term and f the model. For linear functions: f{x) = (w,x)
+ b, the regularization term is often defined as Q[f] = ||w||, where
IIIlp is the Lp-norm (Hoerl and Kennard, 1970; Tibshirani, 1994;
Zou and Hastie, 2005). This has the effect of smoothing f and reduc-
ing its generalization error. The use of the L,-norm is known as the
ridge penalization, whereas the use of the L;-norm as the LASSO
penalization, which has the property of simultaneously doing
shrinkage and feature selection.

In this paper, we focus on penalized logistic regression. Logistic
regression has the main advantage of computing a probability
value rather than a score, as for the SVM. Furthermore, the ridge
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logistic regression has been shown to reach the same performance
as the SVM on standard text categorization problems (Zhang and
Oles, 2001). Nevertheless, it produces a dense solution which can-
not be used for large scale categorization. In (Genkin et al., 2007),
the LASSO logistic regression was used to obtain a sparse solution.
However, when the number of features is larger than the number
of observations and/or when the features are correlated, the ridge
penalization performance dominates the LASSO one (Zou and Has-
tie, 2005). Taking into account these observations, we propose a
new model selection which produces a sparse solution by
approaching the ridge solution.

The rest of the paper is organized as follows: in the next section
we discuss related works; we then describe, in Section 3, our mod-
el selection approach before reporting, in Section 4, our experi-
mental results; Section 5 concludes the paper.

2. Related work

In (le Cessie and van Houwelingen, 1992), the authors have
shown how ridge penalization can be used to improve the logistic
regression parameter estimates in the cases where the number of
features is larger than the number of observations or when the
variables are highly correlated. They have applied ridge logistic
regression on DNA data and have obtained good results with stable
parameters. More recently, the ridge logistic regression was used
in (Zhang and Oles, 2001) on the text categorization problem
where the data are sparse and the number of features is larger than
the number of observations. The authors have proposed several
algorithms, which take advantage of the sparsity of the data, to
solve efficiently the ridge optimization problem. The experimental
results show that the L, logistic regression reaches the same per-
formance as the SVM. Although the ridge method allows to select
a more stable model by doing continuous shrinkage, the produced
solution is dense and thus not appropriate for large and sparse data
such as textual data.

The LASSO regularization (L;-norm) has been introduced in
(Tibshirani, 1994). The author shows, for linear regression, that
the L; penalization can not only do continuous shrinkage but has
also the property of doing automatic variable selection simulta-
neously which means that the L, solution is sparse. In (Genkin et
al., 2007), an optimization algorithm based on Zhang and Oles
(2001) is presented for Ridge and LASSO logistic regressions in
the context of text categorization. According to their experiments,
the LASSO penalization gives slightly better results than the ridge
penalization in terms of the macro-averaged-F; measure (the mi-
cro-averaged results are not given). It has been shown in (Efron
et al,, 2004; Tibshirani, 1994; Zou and Hastie, 2005) that the per-
formance of the LASSO is dominated by the ridge in the following
cases (we denote by p the number of features and by n the number
of observations):

e p>n: the LASSO will only select at most n features,
o the features are highly correlated: the LASSO will select only
one feature among the correlated features.

To tackle the limitations of the LASSO, the Elastic net method has
been proposed in (Zou and Hastie, 2005) which tries to capture
the best of both L; and L, penalizations. The Elastic net uses both
Ly and L, regularization in the linear regression problem. The
authors show that the L, regularization term can be reformulated
by adding p artificial input data such that each artificial data i
has only the ith component non-null set to /7, where 1, is the
L, regularization hyperparameter. This reformulation, which leads
to a LASSO problem, relies on the particular form of the least
square term, and cannot be extended to the logistic regression

problem. Furthermore, as the L; and L, regularizations are done
simultaneously, it is unclear how the solution of the Elastic net
approaches the L, solution. In (Zhao and Yu, 2006), the model con-
sistency of LASSO is studied for linear regression and it is shown
that the consistency of LASSO depends on the regularization
parameter. In (Bach, 2008), the author proves that for a regulariza-
tion parameter decay factor of J, a consistent model can be
obtained by applying LASSO on bootstrap samples and by selecting
only the intersecting features. Nevertheless, using LASSO on boot-
strap samples is a time consuming process. Moreover, since this
method is based on LASSO, it also fails to induce a good model
when the variables are correlated.

3. Selected Ridge Logistic Regression

The logistic regression model is part of the Generalized Linear
Model (GLM) family (Hastie and Tibshirani, 1990; Mccullagh and
Nelder, 1989). The GLM is a family of models, parametrized by g,
which associate a target variable y to an input data x (x € RP)
according to the relation B-x=g(y) where g is a link function
and B e RP. For simplicity, we represent any linear function
B -x + By by B-x, where x is ¥ with an extra dimension set to 1,
and g is p’ with an extra dimension set to ;. The logistic regression

model is obtained by using a logit function g(y) = lf%/’?x) When
y € {—1,1}, the logistic regression model can be written as:
1
Py=1x)=———+— 1
V=182 = e 5w M)

B can be obtained by maximizing the log-likelihood over the train-
ing set D= {(%1,Y1),.--,(Xa,y,)}. However, in order to obtain a
strictly convex optimization problem and to avoid overfitting, a Tik-
honov regularization term (Hoerl and Kennard, 1970) is added,
leading to the following ridge logistic regression problem:

§ = argmin S log(1+exp(—y;B - X)) + || Bl13 (2)
1(B)

where / is a strictly positive scalar. Adding a ridge regularization
term is equivalent, in a Bayesian framework, to using a Gaussian
prior on each component of g, under the assumption that the com-
ponents are independent, i.e. P(8) = [[;P(f;) with P(§;) ~ N(0,5).

Several algorithms have been proposed in the literature to solve
the optimization problem in (2) (Friedman et al., 2008; Minka,
2003). In (Genkin et al., 2007), an efficient algorithm, based on
the one presented in (Zhang and Oles, 2001), is proposed to solve
problems with sparse data, such as text documents. However,
the ridge regression solution is a dense vector which can hardly
be used in large scale categorization where hundreds of thousand
features are used. The problem we face is thus the one of finding
B such that:

1. pis close to g* and thus behaves well, i.e. [(§) ~ I(§*);

2. B is a sparse solution and thus can be used on large datasets.

The second order Taylor series expansion on I(g) around g* leads
to:

18) 1B + (B~ BYVIE) + 5 (B~ BY H(B)(B -~ B)
1) + 5 (B B HB) B~ B) 3)

where VI(g*) and H/(p*) are respectively the gradient and the Hes-
sian of I(B) at p* and where the equality derives from the fact that
for g*, the ridge solution, the gradient vanishes. Hence, obtaining
a p yielding a value for I close to the one of g* while being sparse
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