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a  b  s  t r  a  c  t

This  work  describes  a Monte  Carlo  algorithm  which  appropriately  takes  into  account  the stochastic  behav-
ior  of electron  transport  in solids  and  the simulation  of  the  energy  distributions  of  the  secondary  and
backscattered  electrons  from  polymethylmethacrylate  irradiated  by  an  electron  beam.  The  simulation  of
the  backscattered  and  secondary  electron  spectra  also  allows  calculating  the  backscattering  coefficient
and  the secondary  electron  yield  of  polymethylmethacrylate  as a function  of  the  initial  energy  of  the
incident  electrons.  Results  of  the simulation  are  compared  with  the  available  experimental  data.  The
importance  of  considering  all the  electrons  emerging  form  the  surface  in  calculating  the  secondary  elec-
tron  yield  and  the  backscattering  coefficient  is  highlighted.  In  particular,  we will discuss  the importance
of  taking  into  account  the  tail  of  high  energy  secondary  electrons  in the  spectrum  for  the simulation  of
the  backscattering  coefficient.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The study of the electronic and optical properties of the mat-
ter is of great importance for our comprehension of physical and
chemical processes which occur in solids. Electronic structure study
represents only one example where electron–matter interaction
mechanisms play a fundamental role. There are many applicative
areas where electron–matter interaction is involved. In particular,
let us just mention electron cloud effect on the wall-surface of the
particle accelerator vacuum chambers [1–3], electron interaction
with the spacecraft surfaces [4–6], nano-metrology for the most
advanced CMOS processes [7–9], scanning electron microscopy
[10–12], Lorentz microscopy [13–15], and electron spectroscopies
[16,17].

Other very important fields which deserve to be mentioned
are: plasma processing of materials, local melting of materials for
joining large components, plasma-wall in fusion reactors, electron
multipliers, electron lithography, and radiation damage. Radiation
damage due to electrons interaction with the biological tissues,
in particular, is important in the therapies which uses hadron
beams. In fact, in proton cancer therapy, we wish to minimize the
effects of the irradiation on the healthy tissues near to the diseased
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cells. When fast protons propagate through organic targets, a large
number of secondary electrons are generated, and this process is
followed by the subsequent propagation of the secondary electrons
in a nanometer scale [18]. Along the track of the incident protons,
the shower of secondary electrons is a potential source of radiation
damage. Secondary electrons of very low energy are toxic for the
human body cells, since they produce damage to the biomolecules
due to ionizations/excitations and the resulting break of chemical
bonds. Also the secondary electrons with ultra-low energies, which
in the past were thought to be relatively harmless, are danger-
ous for the biomolecules due to the so-called “dissociative electron
attachment” [19,20].

This work describes a Monte Carlo algorithm which takes into
account the stochastic behavior of electron transport in solids
and treats event-by-event all the elastic and inelastic interactions
between the incident electrons and the particles of the solid target
[21].

It was  recently demonstrated that the choice of the optical data
model strongly influences the results of a simulation [22]. A com-
parison of the inelastic mean free paths calculated using extended
Mermin [23,24] and extended Drude theory [25] is presented in Ref.
[22]. Extended Mermin theory [23,24] was utilized in this work.

The Monte Carlo algorithm was implemented in a computer
code in order to simulate the energy distributions of the sec-
ondary and backscattered electrons from polymethylmethacrylate
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(PMMA) irradiated by an electron beam. Several values of the ini-
tial kinetic energy of the incident electrons are considered, and the
evolution of the shape of the spectra is investigated.

The simulation of the backscattered and secondary electron
spectra also allows calculating the secondary electron yield and
the backscattering coefficient of PMMA  as a function of the ini-
tial energy of the incident electrons. According to the experimental
convention, the secondary electron yield is calculated integrating
the spectra of all the emitted electrons in the energy range from
0 to 50 eV. According to the same convention, the backscattering
coefficient is calculated integrating the spectra of all the emitted
electrons in the energy range from 50 eV to the primary electron
energy E0.

We  discuss the effect of ignoring the tail of high energy (>50 eV)
secondary electrons in the calculation of the backscattering coeffi-
cient and of ignoring the tail of low energy (<50 eV) backscattered
electrons in the calculation of the secondary electron yield. Neglect-
ing these tails is quite usual in many Monte Carlo simulations of
both secondary electron yields and backscattering coefficient even
if it is clear that, since the experiment cannot distinguish between
electrons, all the ejected electrons have to be considered in the
integration from 0 to 50 eV (calculation of the secondary electron
yield) and from 50 eV to the primary energy (calculation of the
backscattering coefficient).

We demonstrate, on the one hand, that ignoring the tail of high
energy secondary electrons (in the primary energy range from 50
to 1500 eV and for PMMA)  introduces errors in the estimation of
the backscattering coefficient calculation.

Neglecting the tail of low energy backscattered electrons has, on
the other hand, small or negligible effects on the evaluation of the
secondary electron yield. These effects are furthermore confined to
primary energies smaller than 200 eV.

2. Theoretical framework

The results presented in this paper were obtained using differ-
ential and total elastic scattering cross sections calculated utilizing
Mott theory [26–28], i.e. numerically solving the Dirac equation in
a central field; this procedure is known as the “relativistic partial
wave expansion method” and it has been demonstrated to provide
excellent results when compared to experimental data [29–31]. For
details about the present calculations of the Mott cross section, see
Ref. [32].

On the side of the energy losses, the inelastic mean free paths are
calculated by taking into account the inelastic interactions of the
incident electrons with atomic electrons, phonons, and polarons.

The calculation of the electron–electron inelastic scattering pro-
cesses was performed within the Mermin theory [23]. The Mermin
dielectric function is given by

εM(q, ω) = 1 + (1 + i/ω�)[ε0(q, ω + i/�) − 1]
1 + (i/ω�)[ε0(q, ω + i/�) − 1]/[ε0(q, 0) − 1]

, (1)

where q is the momentum, ω the frequency, � the relaxation time,
and ε0(q, ω) the Lindhard dielectric constant [33].

Indicating with e the electron charge, fp the Fermi–Dirac dis-
tribution, and εp the free electron energy, the Lindhard dielectric
constant ε0(q, ω) is given by

ε0(q, ω) = 1 + 4�e2

q2
B(q, ω), (2)

B(q, ω) =
∫

dp

4�3

fp+q/2 − fp−q/2

ω − (εp+q/2 − εp−q/2)/�
. (3)

If we now consider a superposition of free and bound oscillators,
for any oscillator the energy loss function (ELF) is the opposite of

the imaginary part of the inverse of the Mermin dielectric function.
It is given by

Im
[ −1

εM(ωi, �i; q, ω)

]
= εM2

εM2
1

+ εM2
2

. (4)

where

εM = εM1 + iεM2 (5)

and ωi, and � i are, respectively, the frequency and the damping
constant associated to any oscillator.

According to Abril et al. [24], a linear combination of Mermin-
type energy loss functions, one per oscillator, allows to calculate
the electron ELF, for q = 0, for any given material:

Im
[ −1

ε(q = 0, ω)

]
=

∑
i
AiIm

[ −1
εM(ωi, �i; q = 0, ω)

]
. (6)

Ai, ωi, and � i are determined looking for the best fit of the available
experimental optical ELF.

The Ritsko et al. experimental optical data [34] were used for
evaluating the parameters Ai, ωi, and � i of PMMA: the value of these
parameters were calculated and reported by de Vera et al. and can
be found in Ref. [35].

Once obtained the parameters corresponding to the best fit of
experimental optical data, ELF(q = 0), the extension out of the opti-
cal domain (q /= 0) can be obtained by [24]

Im
[ −1

ε(q, ω)

]
=

∑
i
AiIm

[ −1
εM(ωi, �i; q, ω)

]
. (7)

Note that the dispersion law is included in the Mermin the-
ory, and it is not necessary, as in the case of the Drude–Lorentz
approach, to introduce an approximate expression of it to extend
the ELF beyond the optical domain.

Knowledge of the energy loss function allows calculating the
differential inverse inelastic mean free path (DIIMFP), given by

d�−1
e

d�ω
= 1

�a0T

∫ q+

q−

dq

q
Im

[ −1
ε(q, ω)

]
, (8)

where a0 is the Bohr radius, E is the kinetic energy of the incident
electrons and

q± =
√

2m

�2
(
√

E ±
√

E − �ω). (9)

The Mermin DIIMFP of electrons in PMMA  is represented in
Fig. 1, for kinetic energies of the incident electrons in the range
from 50 to 1000 eV.

The inverse of the integral of every curve presented in Fig. 1
provides, for each kinetic energy E, the inelastic mean free path �e.
For a discussion about PMMA  inelastic mean free path calculation
using different approaches, see Refs. [22,36].

Other mechanisms of inelastic scattering and energy loss
are related to the electron–phonon and to the polaronic effect.
Electron–phonon interactions were described using the Fröhlich
theory [37,38]. Polaronic effect was modeled according to the
law proposed by Ganachaud and Mokrani [39]. The introduction
of these effects is important because, when the electron energy
E becomes lower than ∼20–50 eV, the dielectric formalism pre-
sented so far is no longer able to accurately describe energy loss
phenomena. In this region, electrons lose energy in many small
amounts interacting with phonons, in particular with the optical
modes of lattice vibrations. In his theory of the electron–phonon
interaction, Fröhlich [37] described the interaction of free conduc-
tion electrons with the longitudinal optical mode lattice vibrations.
Since, according to Ganachaud and Mokrani [39], the dispersion
relation of the longitudinal phonons can be neglected in the optical
branch, one can use a single phonon frequency ω.  Using Fröhlich
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