Accepted Manuscript

Title: Wetting behaviour and drag reduction of superhydrophobic layered double hydroxides films on aluminum

Author: Haifeng Zhang Liang Yin Xiaowei Liu Rui Weng

Yang Wang Zhiwen Wu

PII: S0169-4332(16)30069-1

DOI: http://dx.doi.org/doi:10.1016/j.apsusc.2016.01.208

Reference: APSUSC 32440

To appear in: APSUSC

Received date: 15-10-2015 Revised date: 22-1-2016 Accepted date: 24-1-2016

Please cite this article as: H. Zhang, L. Yin, X. Liu, R. Weng, Y. Wang, Z. Wu, Wetting behaviour and drag reduction of superhydrophobic layered double hydroxides films on aluminum, *Applied Surface Science* (2016), http://dx.doi.org/10.1016/j.apsusc.2016.01.208

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Wetting behaviour and drag reduction of superhydrophobic layered double hydroxides films on aluminum

Haifeng Zhang^{a,b}, Liang Yin^{a*}, Xiaowei Liu^{a,b}, Rui Weng^a, Yang Wang^a, Zhiwen Wu^a

^aMEMS Center, Harbin Institute of Technology, Harbin, 150001, China

^bKey Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin, 150001, China

*. Tel: 86 451 86413451; fax: 86 451 86413441, email: yinliang2003@126.com

Abstract

We present a novel method to fabricate Zn-Al LDH (layered double hydroxides) film with 3D flower-like micro-and nanostructure on the aluminum foil. The wettability of the Zn-Al LDH film can be easily changed from superhydrophilic to superhydrophobic with a simple chemical modification. The as-prepared superhydrophobic surfaces have water CAs (contact angles) of 165±2 °. In order to estimate the drag reduction property of the surface with different adhesion properties, the experimental setup of the liquid/solid friction drag is proposed. The drag reduction ratio for the as-prepared superhydrophobic sample is 20~30% at low velocity. Bearing this in mind, we construct superhydrophobic surfaces that have numerous technical applications in drag reduction field.

Download English Version:

https://daneshyari.com/en/article/5348650

Download Persian Version:

https://daneshyari.com/article/5348650

<u>Daneshyari.com</u>