Accepted Manuscript

Title: Fabrication and characterization of polyethersulfone/carbon nanotubes (PES/CNTs) based mixed matrix membranes (MMMs) for nanofiltration application

Author: Li Wang Xiangju Song Tao Wang Shuzheng Wang

Zhining Wang Congjie Gao

PII: S0169-4332(14)02917-1

DOI: http://dx.doi.org/doi:10.1016/j.apsusc.2014.12.183

Reference: APSUSC 29418

To appear in: APSUSC

Received date: 1-10-2014 Revised date: 23-12-2014 Accepted date: 26-12-2014

Please cite this article as: L. Wang, X. Song, T. Wang, S. Wang, Z. Wang, C. Gao, Fabrication and characterization of polyethersulfone/carbon nanotubes (PES/CNTs) based mixed matrix membranes (MMMs) for nanofiltration application, *Applied Surface Science* (2015), http://dx.doi.org/10.1016/j.apsusc.2014.12.183

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Fabrication and characterization of polyethersulfone/carbon

nanotubes (PES/CNTs) based mixed matrix membranes (MMMs) for

nanofiltration application

Li Wang, Xiangju Song, Tao Wang, Shuzheng Wang, Zhining Wang*, Congjie Gao

Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean

University of China, Qingdao 266100, China

Abstract

Polyethersulfone/carbon nanotubes (PES/CNTs) based mixed matrix membranes

(MMMs) were prepared by phase inversion method for nanofiltration (NF)

application. Carboxylated CNTs with different diameter and concentration were

incorporated into the polymer matrix to enhance the performances of the NF

membranes. The prepared PES/CNTs membranes were characterized and evaluated in

terms of membranes morphology, structure, surface properties, and separation

performances. Two types of CNTs with different diameters (20 and 40 nm, marked as

CNT1 and CNT2, respectively) were chosen to investigate the effect of CNT diameter

on membrane performances. The effect of CNT concentrations (from 0.01 to 1 wt%)

was also tested by introduction of CNT2 in the MMMs. As a result, the MMMs

embedded with CNT1 achieved better NF performances. When CNT2 concentration

reaches 0.1 wt%, the PES/CNT2 membranes obtained the highest water flux (38.91 L/

m²h) and Na₂SO₄ rejection (87.25%) at 4 bar. The solute rejection was in a sequence

of $R(Na_2SO_4) > R(MgSO_4) > R(NaCl)$.

Keywords

Carbon nanotubes; Mixed matrix membranes; Nanofiltration membrane; Desalination

*Corresponding author: Tel.: +8653266782017; Fax: +8653266782301.

E-mail address: wangzhn@ouc.edu.cn.

1

Download English Version:

https://daneshyari.com/en/article/5348690

Download Persian Version:

https://daneshyari.com/article/5348690

Daneshyari.com