## Accepted Manuscript

Title: Surface Potentials of (111), (110) and (100) oriented  $CeO_{2-x}$  thin films

Author: Hans F. Wardenga Andreas Klein



| PII:           | S0169-4332(16)30547-5                              |
|----------------|----------------------------------------------------|
| DOI:           | http://dx.doi.org/doi:10.1016/j.apsusc.2016.03.091 |
| Reference:     | APSUSC 32857                                       |
| To appear in:  | APSUSC                                             |
| Received date: | 23-1-2016                                          |
| Revised date:  | 9-3-2016                                           |
| Accepted date: | 12-3-2016                                          |

Please cite this article as: Hans F. Wardenga, Andreas Klein, Surface Potentials of (111), (110) and (100) oriented CeO<sub>2minusx</sub> thin films, <*![CDATA[Applied Surface Science]]*> (2016), http://dx.doi.org/10.1016/j.apsusc.2016.03.091

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

## Surface Potentials of (111), (110) and (100) oriented $\mbox{CeO}_2$ thin films

## Highlights

- Fermi level positions, work functions and ionization potentials of differently oriented CeO2 thin films are determined photoelectron spectroscopy
- The state of the surface is varied by different deposition conditions and post-deposition treatments
- The ionization potential varies is more than 2 eV different for most strongly oxidized and reduced surfaces. This 2-3 times as much as observed for other oxide surfaces
- The Fermi level position varies only slightly upon surface oxidation and reduction
- A Ce3+ concentration of >10% remains even on the most strongl oxidized surfaces, which exhibit ionization potentials >9 eV

Page 1 of 19

Download English Version:

## https://daneshyari.com/en/article/5348743

Download Persian Version:

https://daneshyari.com/article/5348743

Daneshyari.com