

Applied Surface Science

journal homepage: www.elsevier.com/locate/apsusc

Full ALD Ta₂O₅-based stacks for resistive random access memory grown with *in vacuo* XPS monitoring

K.V. Egorov^{a,*}, Yu.Yu. Lebedinskii^{a,c}, A.M. Markeev^a, O.M. Orlov^b

^a Moscow Institute of Physics and Technology, Institutskii per. 9, 141700 Dolgoprudny, Russia

^b Scientific Research Institute of Molecular Electronics and Plant "Micron", 1-st Zapadnypr-d, Bld. 1, 124462 Zelenograd, Russia

^c National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoye shosse 31, 115409 Moscow, Russia

ARTICLE INFO

Article history: Received 8 July 2015 Accepted 31 July 2015 Available online 4 August 2015

Keywords: In vacuo XPS Atomic layer deposition Ta₂O₅ ReRAM Interface engineering

ABSTRACT

Ta₂O₅-based metal-insulator-metal stacks for resistive random access memory were grown by atomic layer deposition technique only with the emphasis on different top metal–oxide interface engineering. The impact of top TiN electrode growth and NH₃ treatment on dielectric chemical and electrical properties was discussed. In addition the TiN/Ta₂O₅/Al₂O₃/TiN stack with bilayer dielectric was grown and studied too. According to *in vacuo* XPS analysis at top interface both TiN/Ta₂O₅/TiN and TiN/Ta₂O₅ (NH₃-treated)/TiN stacks comprise the TaO_xN_y interlayer which is twice thicker in the case of stack with NH₃ treatment (~1.3 nm) in comparison with untreated one (~0.7 nm). *In vacuo* XPS analysis also showed that 2 nm Al₂O₃ insert between Ta₂O₅ and top TiN electrode allowed to completely block formation of TaO_xN_y interlayer at TiN/Ta₂O₅/Al₂O₃/TiN stack. As a result it was found that TiN/Ta₂O₅/TiN demonstrated gradual and rather slow (~10⁻³ s) character of resistive switching while the switching at stack with bilayer Ta₂O₅/Al₂O₃ dielectric is much more abrupt, faster and it reveals more than one order of magnitude higher endurance.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Transition metal oxide based ReRAM devices have attracted a lot of attention due to their good scalability, fast speed and high endurance [1,2]. Since 3-D V-NAND Flash memory has been introduced to the market the concept of Vertical ReRAM is also considered to be more cost-effective for the industrial application [3]. However, V-ReRAM architecture requires high conformal deposition of both dielectric and conductive layers on the high aspect ratio substrates. Due to the unique property of ALD technique to produce highly conformal coatings [4] the development of fully ALD based methods for the ReRAM stacks is of great interest.

Amongst the binary metal oxides, Ta_2O_5 based ReRAM devices have demonstrated encouraging electrical performance, including high endurance, high switching speed, low energy operation and forming-free resistive switching. However, oxygen deficient ion sputtered TaO_x films are mostly applied for ReRAM stacks [2,5]. Usually ALD metal oxides are highly stoichiometric and their

* Corresponding author. *E-mail address:* egorov.constantin@gmail.com (K.V. Egorov).

http://dx.doi.org/10.1016/j.apsusc.2015.07.217 0169-4332/© 2015 Elsevier B.V. All rights reserved. application for Pt free ReRAM requires scavenging (extracting) thin active metals layers (Ti, Hf, Ta) leading to oxygen deficiency in the dielectric [6,7]. Unfortunately ALD of Ti, Hf, Ta is of great challenge and the creation of full ALD ReRAM stack requires different approaches. One of the possible solutions is an annealing of ALD dielectric in reducing atmosphere accompanied with in situ top electrode deposition (TiN) [8]. Another interesting approach is a using of two layer or multilayer ALD Ta₂O₅ based dielectrics with emphasizing on interface chemical interactions [3,9]. However, the composition of the layers is concealed in these works, thus the clear understanding and particularly the modeling of resistive switching in such stacks become rather difficult. It is evident that the application of in situ (in vacuo) chemical state monitoring (e.g., using of X-ray Photoelectron Spectroscopy (XPS)) both for the approach with the dielectric reducing annealing and for the approach with the multilayer dielectric including interface barrier layers at interfaces is quite desirable. First it is more convenient to study full ALD ReRAM stacks on planar metal-insulator-metal (MIM) structures. Thus, this work is aimed at the chemical and resistive switching properties investigations of ReRAM planar stacks where both Ta₂O₅ based dielectrics and electrodes (TiN) are grown by thermo-ALD in combination with in vacuo XPS analysis.

Fig. 1. The general scheme of ReRAM stacks.

2. Experimental

The TiN(20 nm)/Ta₂O₅(7 nm)/TiN(20 nm)MIM stacks were grown by thermo-ALD using a vertical type Sunale R-100 Picosun OY ALD reactor containing a turbo molecular-pumped ultrahigh vacuum transfer system for in vacuo XPS analysis. p-type $(\rho = 12 \Omega \text{ cm})$ Si wafers with native oxide were employed as substrates. Both bottom and top TiN electrodes were grown by ALD at 400 °C using TiCl₄ and NH₃. The TiCl₄ and NH₃ pulse durations were 0.1 s and 1.0 s, respectively. For Ta₂O₅ ALD (300 °C) Ta(OC₂H₅)₅ and H₂O were used. Ta(OC₂H₅)₅ and H₂O pulse durations were 0.5 s and 0.1 s, respectively. On the part of the samples 2 nm Al_2O_3 layer was grown on Ta₂O₅ before top TiN electrode deposition. For Al₂O₃ ALD (300 °C) Al(CH₃)₃ and H₂O were used. Al(CH₃)₃ and H₂O pulse durations were 0.1 s and 0.1 s, respectively. The other part of samples after Ta₂O₅ deposition was exposed to treatment $(400 \,^{\circ}\text{C}, 2 \,\text{h})$ by NH₃ pulses (1 s, duty cycle 10 s) directly before TiN top electrode deposition.

To study the chemical state of the MIM-stack and its interfaces by in vacuo XPS the stack was transferred to the analyzing chamber on the next key stages of the growth: after 3 nm Ta₂O₅ deposition on TiN electrode (1); after reaching of Ta₂O₅ total thickness in 7 nm (2); after 4 nm TiN top electrode deposition (3) carried both on the samples with unmodified Ta₂O₅ and on the samples modified by NH₃ treatment or by insert of Al₂O₃ interlayer (4). XPS spectra were obtained by Theta Probe Thermo Fisher Scientific spectrometer with a monochromatic Al Ka X-ray source (1486.7 eV). The core level spectra were recorded with the 0.1 eV step and 50 eV pass energy. The spectrometer energy scale was calibrated using Au4f7/2 core level lines located at E_b = 84.0 eV. The base pressure in the analytical chamber was better than 5×10^{-10} mbar. The lines corresponding to oxide species were fitted by symmetric convolution of Gaussian and Lorentzian functions and the lines corresponding to the metallic species (bulk TiN) were fitted with the Doniach-Sunjic function, i.e., a convolution of a Gaussian and Lorentzian functions with an additional asymmetry parameter.

For electrical investigation the top TiN electrodes of both unmodified and modified Ta_2O_5 based stacks were lithographically patterned trough the hard Al mask using wet etching processes. The general scheme of ReRAM stack is presented in Fig. 1. The diameters of top electrodes were of 100 μ m.

The electrical properties were investigated by current–voltage (I–V) measurements. Direct current (DC) sweep and pulsed I–V measurements were carried out using an AgilentB1500A semiconductor device analyzer. The voltage pulse duration was in a range of 10^{-3} – 10^{-6} s. Compliance current 10^{-3} A was used only during the forming step. At all measurements a bias voltage was applied to the top electrode and the bottom electrode was grounded.

Fig. 2. Ti2p XPS spectra collected at bottom TiN/Ta₂O₅ interface.

3. Results and discussions

Taking into account the importance of the both bottom and top dielectric interfaces analysis we firstly studied bottom TiN/Ta_2O_5 interface by XPS measurements after ALD of only 3 nm of Ta_2O_5 to ensure the interface analysis without ion etching. Really, Figs. 2 and 3 represent the Ti2p and Ta4f core level spectra, respectively, measured after 3 nm Ta_2O_5 ALD on TiN.

The Ti2p spectrum can be fitted with 3 doublets. The first doublet with the $2p_{3/2}$ component centered at E_b = 455.3 eV originates from the bulk TiN [10]. The second doublet with $2p_{3/2}$ component centered at E_b = 457.0 eV is attributed to TiON subsurface layer [10]. The third doublet with $2p_{3/2}$ component is found at E_b = 458.4 eV. This line is usually attributed to TiO₂, despite that the binding

Fig. 3. Ta 4f XPS spectra collected at (a) bottom TiN/Ta_2O_5 interface; (b) top Ta_2O_5/TiN interface; (c) top Ta_2O_5/TiN interface with NH₃ treatment prior to top TiN ALD; (d) top $Ta_2O_5/Al_2O_3/TiN$ interface.

Download English Version:

https://daneshyari.com/en/article/5348946

Download Persian Version:

https://daneshyari.com/article/5348946

Daneshyari.com