Accepted Manuscript

Title: Growth of Mn-doped ZnO thin films by rf-sputter deposition and lattice relaxation by energetic ion impact

Author: N. Matsunami M. Itoh M. Kato S. Okayasu M.

Sataka H. Kakiuchida

PII: S0169-4332(15)00856-9

DOI: http://dx.doi.org/doi:10.1016/j.apsusc.2015.04.016

Reference: APSUSC 30109

To appear in: APSUSC

Received date: 1-11-2014 Revised date: 10-3-2015 Accepted date: 4-4-2015

Please cite this article as: N. Matsunami, M. Itoh, M. Kato, S. Okayasu, M. Sataka, H. Kakiuchida, Growth of Mn-doped ZnO thin films by rf-sputter deposition and lattice relaxation by energetic ion impact, *Applied Surface Science* (2015), http://dx.doi.org/10.1016/j.apsusc.2015.04.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Growth of Mn-doped ZnO thin films by rf-sputter deposition and lattice relaxation

by energetic ion impact

N. Matsunami^a, M. Itoh^a, M. Kato^a, S. Okayasu^b, M. Sataka^b, H. Kakiuchida^c

^a School of Engineering, Nagova University, Nagova 464-8603, Japan

^b Japan Atomic Energy Agency (JAEA), Tokai 319-1195, Japan

^c National Institute of Advanced Industrial Science and Technology (AIST),

Nagoya 463-8560, Japan

We have grown Mn-doped ZnO (MZO) thin films on SiO₂-glass, sapphire (Al₂O₃) and MgO

(001) substrates for the substrate temperature (T_s) from room temperature (RT) to 550 °C, by

using a radio-frequency (rf)-magnetron sputter deposition (off-axis) method with a Zn_{1-x}Mn_xO

 $(x\approx0.05)$ sintered target. X-ray diffraction (XRD) shows that MZO films are polycrystalline

with hexagonal structure and has exceptionally a-axis predominant orientation for MgO at T_s

above 400 °C, (110) on r-plane-cut Al₂O₃ at T_s above 150 °C and c-axis orientation otherwise.

According to Rutherford backscattering spectroscopy (RBS) of 1.8 MeV He ions, Mn/Zn is

6 % and the composition is nearly stoichiometric. MZO films have high resistivity (\sim 1M Ω cm)

and paramagnetism. It is found that for MZO films on SiO₂, the XRD intensity decreases with

increasing the deviation of lattice parameter of thin films from the bulk value. Optical

properties, and observations of lattice relaxation and resistivity modification by energetic ion

impact are also described.

Keywords: ZnO:Mn thin films; Growth orientation; Electric, optical and magnetic properties;

Lattice relaxation by energetic ion impact

Corresponding author: N. Matsunami,

E-mail: n-matsunami@nucl.nagoya-u.ac.jp

1

Download English Version:

https://daneshyari.com/en/article/5349166

Download Persian Version:

https://daneshyari.com/article/5349166

<u>Daneshyari.com</u>