Contents lists available at ScienceDirect

Applied Surface Science

journal homepage: www.elsevier.com/locate/apsusc

Full Length Article

Promotional effect of Al₂O₃ on WO₃/CeO₂-ZrO₂ monolithic catalyst for selective catalytic reduction of nitrogen oxides with ammonia after hydrothermal aging treatment

Haidi Xu^a, Shuang Liu^b, Yun Wang^c, Qingjin Lin^b, Chenlu Lin^b, Li Lan^d, Qin Wang^c, Yaoqiang Chen^{a,b,*}

^a Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610064, PR China

^b College of Chemistry, Sichuan University, Chengdu 610064, PR China

^c Sinocat Environmental Technology Co., Ltd., Chengdu 611731, PR China

^d College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, PR China

ARTICLE INFO

Article history: Received 3 July 2017 Received in revised form 13 August 2017 Accepted 24 August 2017

Keywords: Selective catalytic reduction Nitrogen oxides Hydrothermal stability Diffusion barrier Al₂O₃ Cerium zirconium mixed oxides

ABSTRACT

Hydrothermal stability of catalysts for selective catalytic reduction of NO_x with NH₃ (NH₃-SCR) has always been recognized as a challenge in development of candidate catalysts for applications in diesel engine emissions. In this study, Al₂O₃ was introduced into CeO₂-ZrO₂ to improve the NH₃-SCR activity of WO₃/CeO₂-ZrO₂ after hydrothermal aging (HA) treatment at 800 °C for 12 h. The activity results indicated that the NH₃-SCR activity of WO₃/CeO₂-ZrO₂-HA was obviously improved in the whole reaction temperature range after doping Al₂O₃ into CeO₂-ZrO₂, for example, the average and maximum NO_x conversion were separately increased by ca. 20% and 25% after HA treatment. XRD, Raman, TEM and EDX results revealed that the introduction of Al₂O₃ inhibited the sintering and agglomeration of CeO₂-ZrO₂ and WO₃ and the formation of Ce₂(WO₄)₃ after HA treatment. Accordingly, WO₃/CeO₂-ZrO₂-Al₂O₃-HA showed remarkably improved structural stability and reducibility, increased surface acidity, and facilitated the reactivity between adsorbed NH₃ and nitrate species, which together contributed to its better catalytic performance after hydrothermal aging treatment.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Nitrogen oxides (NO_x) emitted from the coal fired power plants as stationary resources and the diesel engines as mobile resources, are the major air pollutants, which can cause seriously adverse environment issues, such as acid rain, greenhouse effect, photochemical smog and ozone depletion [1,2]. Currently, the selective catalytic reduction of NO_x with NH₃ as reducing agent is the most effective technology to remove NO_x and has been widely used [3]. Many metal oxide catalysts have been reported as the active species for NH₃-SCR reactions, among them, V_2O_5 -WO₃/TiO₂ catalyst is the most typical commercial catalyst today due to its high activity [4,5]. However, it still possesses some disadvantages, such as a narrow reaction temperature range, low N₂ selectivity, low hydrothermal stability and harmfulness to human body originated from the tox-

E-mail address: nic7501@scu.edu.cn (Y. Chen).

http://dx.doi.org/10.1016/j.apsusc.2017.08.166 0169-4332/© 2017 Elsevier B.V. All rights reserved. icity and volatility of vanadium oxides [6,7]. Consequently, it is imperative to develop novel mixed oxides NH₃-SCR catalysts with high NO_x conversion (especially at the low-temperature range) and N₂ selectivity, excellent hydrothermal stability and a considerable wide operation temperature window, which will be a promising candidate to replace the conventional vanadium-based SCR catalysts.

Ceria, with the advantages of considerable oxygen storage capacity and excellent redox property, has been proved to be an environmental friendly active species or a part of the support in the NH₃-SCR reactions. Recently, increasing attentions have been paid to the Ce-based NH₃-SCR catalysts [3]. Considering the redox property, acid-base property and thermal stability, ceria-zirconia mixed oxides were considered to be one of the most promising support materials for the purification of NO_x [8,9]. Thus, much research has been focused on the ceria-zirconia based NH₃-SCR catalysts in recent years, such as WO₃/CeO₂-ZrO₂ [10–12], MnO_x/CeO₂-ZrO₂ [13,14], CeMZrO_x (M=Nb, Mo) [15,16], Ce_{0.75}Zr_{0.2}MO_{0.05}O_x [17], NiO-CeO₂-ZrO₂ [18], Ce_{0.75}Zr_{0.2}SO₂-PO₄³⁻ [19], CuO-CeO₂-ZrO₂ [20], Fe₂O₃-WO₃/Ce_{0.68}Zr_{0.32}O₂ [21,22]. These catalysts showed

^{*} Corresponding author at: Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610064, PR China.

excellent deNO_x activity, N_2 selectivity and H_2O/SO_2 tolerance under their measurement conditions. However, taking account into the requirements on the lifetime of NH₃-SCR catalysts for NO_x regulation like EURO VI and higher temperature induced by the regeneration of the diesel partial filter (DPF), the NH₃-SCR catalyst must possess ultra-high hydrothermal stability at 800 °C for long time. Among the above modified ceria-zirconia based catalysts, CeNb₃Zr₂O_x [16] and Ce_{0.75}Zr_{0.25}O₂-PO₄³⁻ [19] displayed a relatively higher hydrothermal stability. Whereas, the conditions about the particle shape of the above two catalysts and high cost of niobium are far from the industrial application [23], thus, it is significant to develop monolithic ceria-zirconia based deNO_x catalyst with a low cost. Our previous works reported that WO₃/CeZrO₂ monolithic catalyst could achieve higher than 90% NO_x conversion in a considerably wide operation window of 224-445 °C under $30,000 h^{-1}$ with $1.25 L min^{-1}$, and excellent H_2O/SO_2 tolerance [24,25]. It presented potential application of a NH₃-SCR catalyst applied in the diesel engine, if its hydrothermal stability could be solved with low-cost methods.

Al₂O₃ is one of the most common carrier materials due to its large surface area, high mechanical strength, excellent thermal stability and low cost [26]. The combination between Al_2O_3 and CeO₂-ZrO₂ has been systematically investigated in the threeway catalysts (TWCs). The results demonstrated that the catalytic performances of TWCs were remarkably increased due to enhancements in textural properties, redox properties and thermal stability, compared with single CeO₂-ZrO₂ or Al₂O₃ as the carrier of TWCs [27-30]. As far as we know, there are few reports about the utilization of Al₂O₃ modified cerium zirconium mixed oxides in the NH₃-SCR reactions. Therefore, in this work, we attempted to introduce Al₂O₃ into CeO₂-ZrO₂ by a conventional co-precipitation method to promote the hydrothermal stability of WO₃/CeO₂-ZrO₂ catalyst. The hydrothermal stability of catalysts was evaluated by treating the catalysts at 800 °C for 12 h, 10 vol.% H₂O in air, a GHSV of 30,000 h⁻¹ and a gaseous rate of 1.25 L min⁻¹. It was interesting that the addition of Al₂O₃ remarkably improved the hydrothermal stability of WO_3/CeO_2 -ZrO₂ catalyst, although the deNO_x activity of WO₃/CeO₂-ZrO₂Al₂O₃ was depressed before hydrothermal aging treatment. Various characterizations related to the structure, redox property, and reactivity of adsorbed NH₃ and NO_x species on the catalysts before and after HA treatment were systematically performed via N₂ physisorption, XRD, Raman, TEM, EDX, XPS, H₂-TPR, NH₃-TPD and *in situ* DRIFTS.

2. Experimental

2.1. Catalysts preparation

The support materials CeO₂-ZrO₂ (denoted as CZ) and CeO₂-ZrO₂Al₂O₃ (denoted as CZA) mixed oxides were prepared by the conventional co-precipitation method. In a typical preparation process, desired amounts of Ce(NO₃)₃·6H₂O, Zr(NO₃)₄·5H₂O and Al(NO₃)₃·9H₂O were dissolved in deionized water, respectively. Superfluous NH₃·H₂O-(NH₄)₂CO₃ buffer solution as precipitant was added drop-wise to the solution until the pH value rose to approximately 9, with continuous stirring at the boiling point (above 95 °C) for 6 h. Subsequently, the collected precipitate was filtered and washed by deionized water, followed by drying at 80 °C overnight and calcining at 600 °C for 3 h. The nominal loading of Al₂O₃ was 10 wt.% in CZA and the molar ratio of Ce/Zr was fixed at 68:32 in both materials.

The WO₃/CeO₂-ZrO₂ (W/CZ) and WO₃/CeO₂-ZrO₂Al₂O₃ (W/CZA) catalysts were synthesized by impregnating the asreceived CZ and CZA powders with $(NH_4)_6H_2W_{12}O_{40}$ (AR grade, 99%, Anda, China) solution, the loading of WO₃ was 10 wt.%. The impregnated powders were drying at 80 °C overnight, and then calcining at 600 °C for 3 h in air. The resulting two catalyst powders were subsequently coated on honeycomb cordierites (cylinder, diameter: 11 mm, length: 26 mm, bulk: 2.5 cm^3 , 62 cell cm⁻², Corning, USA), and then dried at 120 °C overnight and calcining at 600 °C for 3 h. Finally, W/CZ and W/CZA monolithic catalysts with the coating content of about 160 gL^{-1} were obtained. The HA carriers and catalysts were obtained by treating the fresh catalysts in air containing 10 vol.% H₂O at 800 °C for 12 h with a GHSV of 30,000 h⁻¹ and a gaseous rate of 1.25 L min–1 [31]. The hydrothermal aging samples were denoted as CZ-HA, CZA-HA, W/CZ-HA and W/CZA-HA, respectively.

2.2. Catalytic activity measurements

The NH₃-SCR activity measurements of the prepared monolithic catalysts were carried out in a fixed-bed quartz tube flow reactor at atmospheric pressure. The flue gas composition was as follows: 500 ppm NO, 500 ppm NH₃ (when used), 5% O₂, N₂ as balance. The premixed gases (2.0% NO in N₂, 2.0% NH₃ in N₂ and 99.99% O₂) were supplied by Testing Technology Research Institute, China. Reactant gases were regulated by mass-flow controllers before entering the reactor. In typical condition, 2.5 cm³ monolithic catalyst sample was used in each run and the total flow rate was about 1.25 L min–1, yielding the GHSV of 30, 000 h⁻¹ by volume. The separate NO oxidation activity was tested in the absence of NH₃. The concentrations of NH₃, NO_x and N₂O in the inlet and outlet gases were recorded after 30 min when the reaction reached a steady state for each test.

The NO_x conversions (X_{NOx}) and N₂ selectivity (S_{N2}) were calculated as follows:

$$X_{NO_{x}}(\%) = \frac{C_{in} - C_{out}}{C_{in}} \times 100$$
 (1)

$$S_{N_2}(\%) = (1 - \frac{2[N_2O]_{out}}{([NO_x]_{in} - [NO_x]_{out}) + ([NH_3]_{in} - [NH_3]_{out})}) \times 100$$
(2)

where, $[NO_x] = [NO] + [NO_2]$, C_{in} and C_{out} denoted the inlet and outlet gas concentration of NO_x , respectively.

2.3. Characterizations

The textural properties of all catalysts were measured by N_2 adsorption-desorption at -196 °C on Quantachrome automated surface area & pore size analyzer (Autosorb SI). The samples were pretreated at 300 °C for 3 h prior to the measurement. The surface areas were determined by Brunauer-Emmett-Teller (BET) model.

Powder X-ray diffraction (XRD) patterns of samples were collected in the 2θ range of $10-80^{\circ}$ using Rigaku D/max-RA Diffractometer equipped with a Cu K_{α} (λ = 0.15406 nm) radiation resource operated at 40 kV and 100 mA, respectively.

Visible Raman spectra of all catalysts were collected on a Lab-RAM HR laser Raman spectrograph with a spectral resolution of 2 cm^{-1} at the room temperature. A Nd: Yag laser of 532 nm was used as the excitation source with a power output of 30 mW. All specimens were illuminated through a $50 \times$ objective and in powder form to prevent diffusion problems. Raman spectra were collected and recorded over the spectral range of 200–1000 cm⁻¹. The specification of the grating was 600 g/mm.

Transmission electron microscopy (TEM) observations were obtained using a Tecnai G^2 F20 S-TWIN TEM (FEI Company, USA, 200 kV accelerating voltage) equipped with STEM, EDX and HAADF systems. Before the experiment, the powder specimens were suspended in ethanol and dispersed by ultra-sonic irradiation; after Download English Version:

https://daneshyari.com/en/article/5349275

Download Persian Version:

https://daneshyari.com/article/5349275

Daneshyari.com