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a b s t r a c t

Stereo correspondence is inherently an ill-posed problem, which is addressed by regularization methods.
This paper introduces a novel stereo correspondence method that uses two synchronous interdependent
optimizations. The regularization of the correspondence problem is done adaptively by considering the
image segments and the intermediate disparity maps of the two optimizations. Our adaptive regulariza-
tion allows inter-segment diffusion at the beginning of the optimizations to be robust against local min-
ima. When the two optimizations start producing similar disparity maps, our regularization prevents
inter-segment diffusion to recover the depth discontinuities. Our experimental results showed that the
proposed algorithm can handle sharp discontinuities well and provides disparity maps with accuracy
comparable to the state of the art stereo methods.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Stereo correspondence is one of the fundamental problems of
computer vision. The typical result of the correspondence problem
is expressed as a disparity map, i.e. spatial shifts in the pixel posi-
tions of the corresponding points. The main difficulties of the cor-
respondence problem are the ambiguity due to the image noise,
repeated texture, and occlusions. These problems make the stereo
correspondence an ill-posed problem, which is classically ad-
dressed by a regularization method to stabilize the solution. The
main role of the regularization is to incorporate a priori informa-
tion to handle image noise and to fill-in missing and ambiguous
data.

Classically, the regularization is employed by local and global
methods. The local methods perform regularization directly on
the data space by employing some aggregation scheme (Intille
and Bobick, 1994; Kanade and Okutomi, 1994; Scharstein and
Szeliski, 1998; Yoon and Kweon, 2006). The global methods, on
the other hand, formulate the problem as an energy functional that
needs to be minimized to produce the desired solution. The regu-
larization is performed on the disparity space by introducing an ex-
plicit smoothness criteria so that reliable disparity values are

propagated to ambiguous image regions. Dynamic programming
was tried by enforcing smoothness only along the epipolar lines
in order to obtain a globally optimal solution to the discrete form
of the energy functional (Ohta and Kanade, 1985; Gong and Yang,
2005). However, the resulting disparity maps contain well-known
streaking effects due to the inconsistency between epipolar lines.
Alternatively, a global minimum of the functional can also be ob-
tained in polynomial time via graph cuts (Roy and Cox, 1998; Ishik-
awa, 2003) by using a convex smoothness term. However, these
methods oversmooth the depth discontinuities. A discontinuity
preserving regularizer might produce a good solution but it is
known that introducing a discontinuity preserving smoothness
term makes the problem NP-complete (Kolmogorov and Zabih,
2004). Therefore, using an approximate optimization method for
the functional with non-convex smoothness terms became more
popular, such as graph cuts (Boykov et al., 2001), belief propaga-
tion (Sun et al., 2003), and genetic algorithm (Saito and Mori,
1995). However, these methods only produce integer valued dis-
parity maps due to their discrete nature. This restriction is a severe
drawback if curved or slanted surfaces are present in the scene (Li
and Zucker, 2006).

Another class of global approaches, as a counterpart, use related
partial differential equations (PDE) and variational methods in or-
der to find the minimizer of the continuous form of the energy
functional. These methods can achieve a continuous solution by
iteratively evaluating the associated Euler–Lagrange equation. An
inherent advantage of these methods is the capability of making
sub-pixel disparity estimations due to the continuous solution they
provide.
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The minimization process of these continuous methods is char-
acterized by the choice of the regularizer. Using a disparity driven
isotropic regularizer with a quadratic term makes the minimiza-
tion robust against local minima (Robert et al., 1992). However,
the depth discontinuities in the resulting disparity maps would
be oversmoothed. Although it is possible to use a non-quadratic
smoothing term, such as total variation regularizer, to inhibit the
oversmoothing of discontinuities (Slesareva et al., 2005), it cannot
handle the discontinuities adequately (Ben-Ari and Sochen, 2007).

There are several other regularization methods for the handling
of the discontinuities. Shah (1993) uses nonlinear diffusion to ex-
tract stereo matches and occluded regions simultaneously in con-
junction with a gradient descent minimization. Similarly, Robert
and Deriche (1996) use anisotropic disparity driven regularization
in order to prevent smoothing of the disparity map at the esti-
mated discontinuities. Therefore, it tends preserve the discontinu-
ities present at the initialization. Alternatively, image driven
regularizers were used to align depth discontinuities along edges
and inhibit smoothing across edges (Alvarez et al., 2002; Kim
et al., 2004). Min et al. (2006) employed the image segments to
perform anisotropic smoothing at the segment boundaries depend-
ing on the magnitude of image gradients. The problem with image
driven regularizers is that they have to work with over-segmented
images when the images are highly textured. In addition, the
boundary leakage problem becomes an issue when there are gaps
at the object boundaries.

Nevertheless, these discontinuity preserving approaches re-
quire sufficiently reliable initialization in order to converge to
the desired solution. In most cases, the initialization errors cannot
be recovered, especially for noisy and occluded regions.

In this paper, we introduce a novel initialization insensitive reg-
ularization method that preserves the depth discontinuities. Our
framework employs two separate but dependent energy function-
als (Akgul and Kambhamettu, 1999; Aydin and Akgul, 2006) which
are intended to be minimized synchronously until converging to
the same solution. Because of the interaction between the optimi-
zations, the overall result of our system is always better than the
results achievable by a single optimization. Reliable convergence
is ensured by starting each optimization with different initial
conditions.

In order to handle depth discontinuities robustly, we employ
image segments to align the depth discontinuities with the seg-
ment boundaries. Unlike the previous image based smoothing
techniques, the proposed method adjusts the smoothing by utiliz-
ing not only the segment information but also the positional differ-
ences between the synchronous optimizations. These two means of
adjusting the smoothing make it possible to use isotropic and
anisotropic smoothing adaptively. As a result, we produce more ro-
bust depth discontinuity positions. Note that our employment of
synchronous optimizations is very different from that of Aydin
and Akgul (2006), which does not use the optimizations for the
regularization and completely ignores the depth discontinuities.

Selecting an appropriate stopping criteria is crucial for many
diffusion techniques in order to avoid oversmoothing and insuffi-
cient regularization (Scharstein and Szeliski, 1998). Since our dis-
continuity preserving regularization method relies on the
positional difference between the solutions of each optimization,
the diffusion between the segments are prevented when both opti-
mizations find the same disparity map, hence smoothing of the dis-
continuities is inhibited even at superfluous iterations. This
inherent stopping criteria of our framework is an important advan-
tage over the similar systems against problems like sensitivity to
extra iterations.

The rest of this paper is organized as follows. Section 2 reviews
the synchronous energy functional. Section 3 describes the pro-
posed regularization that preserves the depth discontinuities. Sec-

tion 4 describes the system validation and experiments. Finally, we
provide concluding remarks in Section 5.

2. Overview of the approach

2.1. Energy-based global stereo formulation

Traditional global stereo energy formulation is written as the
sum of the data term and a regularization term. Consequently,
the stereo correspondence problem is formulated as the minimiza-
tion of the following energy functional,

EðDÞ ¼
Z

a/ðDÞ þ bwðjrDjÞdp; ð1Þ

where D is the disparity map which assigns disparity values to each
pixel p in the reference image. a and b are weighting coefficients for
adjusting the relative weights of each term.

The data term / computes the image similarity measure by
means of commonly used similarity metrics, such as the sum of
squared differences (SSD), the sum of absolute differences (SAD),
and the normalized cross correlation (NCC). The smoothness or reg-
ularization term w is introduced to impose a priori information
(smoothness) on the desired disparity map by penalizing disparity
gradients (rD).

2.2. Synchronous energy formulation

Based on the classical stereo energy functional, the synchronous
optimizations are formulated as the minimization of two energy
functionals by introducing a new tension term u as in the follow-
ing equations.

EðD1Þ ¼
Z

a/ðD1Þ þ bwðjrD1j2Þ þ kuððD1 � D2Þ2Þdp; ð2Þ

EðD2Þ ¼
Z

a/ðD2Þ þ bwðjrD2j2Þ þ kuððD2 � D1Þ2Þdp; ð3Þ

where D1 and D2 are the disparity maps obtained from each
optimization.

The tension term u is for the interaction between the two min-
imizations and it is the core idea of the synchronous optimization
method. The main function of this term is to lower the difference
between the two disparity maps D1 and D2. Note that without
the tension term, minimization of the energy functionals defined
by Eqs. (2) and (3) by starting from different initial configurations
would produce a different disparity map for each equation. How-
ever, if the equations are optimized in synchronization with the
help of the tension term, they would end up finding the same dis-
parity map.

The disparity maps are computed by searching the minimizers
of the energy functionals defined in Eqs. (2) and (3). Minimization
of the functionals via the gradient descent method by introducing
an artificial evolution parameter t yields the equations,

@D1

@t
¼ c a/0ðD1Þ þ br � ðw0rD1Þ þ ku0ðD1 � D2Þð Þ; ð4Þ

@D2

@t
¼ c a/0ðD2Þ þ br � ðw0rD2Þ þ ku0ðD2 � D1Þð Þ; ð5Þ

where /0, w0 and u0 are the derivatives of the functions /, w and u,
respectively. w0 is also called diffusion or conduction coefficient
(Perona and Malik, 1990). The minimizers are found by computing
asymptotic states (t ?1) of the solutions Dt

1 and Dt
2, which are the

disparity maps produced by first and second optimizations at itera-
tion t.

The function of the diffusion term is to produce disparity maps
that assign similar values to neighboring pixels if there is no depth
discontinuity between the pixels, which is called regularization.
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