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a b s t r a c t 

Predictive maintenance has emerged as a fundamental practice to preserve production assets in many 

industrial environments. Of a wide set of approaches, vibration analysis is one of the most used for high- 

speed rotating machinery, especially when fault detection is to be automatic. Traditionally, this task has 

been studied as a classification problem using data extracted from the frequency domain. This approach, 

however, has two main limitations: (a) manufacture and mounting procedures can vary the vibration 

spectra of a machine, even when these share the same design; and (b) incipient fault signatures may 

be concealed in the frequency domain by noise and vibration from other parts of the system. For these 

reasons, the application of a classifier obtained for one machine to another machine is pointless, making 

early fault detection difficult. In this paper, a bearing fault detection problem is tackled using one-class 

classifiers and features extracted from vibration capture in the time domain using recurrence time statis- 

tics. We also describe a study of the behavior of the proposed method in real conditions. Our method 

shows high detection accuracy accompanied by a reduced number of false positives and negatives. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Predictive maintenance aims at increasing the cost efficiency 

of a plant by reducing maintenance expenditure. In contrast with 

classical approaches, predictive maintenance tries to determine the 

status of equipment through continuous or periodic monitoring of 

signals that describe its status. Early fault detection avoids fatal 

breakdowns and facilitates cost-effective maintenance scheduling. 

Nowadays, predictive maintenance technologies are considered es- 

sential to extending equipment life, reducing maintenance costs 

and enhancing asset exploitation [4] . The fault management pro- 

cess can be divided into four main stages [28] : (1) detection , in 

which a system component failure is detected; (2) isolation , in 

which information is obtained about cause and possible spatial 

location of the failure; (3) evaluation , in which failure severity is 

quantified, and (4) prognosis , in which the remaining life of the 

system is estimated. 

In this paper, we focus on the first stage, detection. Detec- 

tion models are traditionally classified in one of two categories. 
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In model-based fault detection approaches, access to input u ( t ) and 

output y ( t ) for the monitored system is assumed to be possible. 

Monitored in order to detect deviations is the discrepancy be- 

tween the behavior of a model of the system and the actual sys- 

tem itself [11,15,26,34] . In signal-based fault detection approaches, 

the availability of the system input u ( t ) is not assumed and de- 

tection is only based on the system output y ( t ). This second ap- 

proach is more broadly applicable in real scenarios where fault de- 

tection must be performed without detailed design data for the 

machinery. Fault detection tackled from a signal-based perspective 

has three fundamental stages. 

(1) Feature extraction. Descriptive features are extracted from 

the available output y ( t ). These should be sensitive to changes in 

system dynamics for a fault to be detected. This fundamental stage 

governs the final accuracy of the detection strategy [15,23] . 

(2) Normal state discrepancy measurement. When new data 

y ( t ) is received, its description based on feature extraction must 

be compared with data representative of a non-faulty state. This 

particular stage has been a hot topic in the pattern-recognition 

community in recent years. However, most research to date 

[5,7,16,19,22,24,36] has tackled this stage as a two- or multi-class 

classification problem based on the availability of fault exam- 

ples. This is not, however, a common eventuality in many real- 

life applications. Few studies to date have taken into account this 
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challenge [29] . When this stage is considered as a novelty detec- 

tion or one-class classification problem, the output is a discrepancy 

measure between the normal state represented by the trained one- 

class model and the current state. This measure will be the input 

of the next stage. 

(3) Discrepancy analysis. A final decision needs to be made in 

this final stage, based on the sequence of obtained discrepancies. 

More challengingly, a purely binary decision is not acceptable, as 

can be elicited from the latest certification standards for machinery 

monitoring systems [10] . Hence, automatic means of assessing fault 

evolution are necessary. 

When dealing with high-speed rotating equipment, vibration 

analysis is one of the most effective methods of evaluating its con- 

dition, detecting defects and avoiding critical failures. In the last 

decade, detection has evolved from visual inspection by human ex- 

perts to automated methods that use advanced signal-processing 

techniques and pattern-recognition models such as neural net- 

works, fuzzy logic and data-driven empirical and physical model- 

ing [12] . As equipment begins to fail, it typically exhibit symptoms 

that suitable methods will indicate as failure precursors. Combin- 

ing sensors with predictive maintenance techniques can avoid un- 

necessary equipment replacement, save costs and improve process 

safety, availability and efficiency. The impact of advances in this 

field becomes immense when we take into account the ongoing 

growth in the markets for certain kinds of rotating machinery, such 

as windmill power generation (with cumulative power of 185 GW 

worldwide in 2010). In this scenario, planned and corrective main- 

tenance is a prohibitive burden. 

The case of fault detection based on vibration captured in com- 

plex machinery falls in the signal-based fault detection category, 

since typically only the vibration signals are available. We focus 

specifically on bearing faults as detected from vibration data. Fea- 

ture extraction in this area has mostly been based on frequency 

space analysis and it is only recently that a growing interest has 

become evident in automatic detection based on features extracted 

from the time domain signal. Classical approaches to the time do- 

main have focused on statistical measures and models specifically 

intended for stationary processes; these tend to average transient 

vibrations such as those of bearings and usually overlook incipient 

fault symptoms, more suitable to time-invariant processes [6] . 

We explore the application of statistical measures from the 

chaos and fractal theory field [8] as an alternative to using classical 

fault detection statistics. Specifically, recurrence time (RT) statis- 

tics [9] extracted from vibration time signals for the machinery 

are used as features. An historic dataset of normal captures pre- 

processed by RT statistics is used to construct a one-class classi- 

fier. A one-class classifier based on extreme statistics is used [21] , 

as it has the advantages of having a reduced set of just two hy- 

perparameters and has demonstrated high classification accuracy 

in comparison with other standard one-class classifiers. 

The paper is organized as follows: in Section 2 and 

Section 2.1 RT statistics, the T1 index and a methodology for se- 

lecting hyperparameters are described; in Section 3 , the EVOC one- 

class classifier model [21] , to be used as the detection model, is 

explained; in Section 5 empirical evidence of the suitability of the 

proposed model for fault detection is reported and some of its key 

properties are highlighted; finally, Section 6 concludes the paper. 

2. Recurrence time statistics 

In the past years, the study of bearing fault detection in the 

frequency space has been studied thoroughly and the principles 

for detecting the faults both manually and automatically have been 

well established [33] . However, it is a well known fact that, when 

the fault is incipient or the system where the bearing is embedded 

is too complex, vibration features due to bearing faults are con- 

Fig. 1. Recurrence Time Statistics calculation illustration. 

cealed by the vibration signature of the rest of the system and 

noise. This fact usually makes early fault detection task in fre- 

quency domains very difficult. In recent years, the interest in auto- 

matic bearing fault detection research has moved towards studying 

how information in the time domain signals can be exploited for 

early detection of bearing faults. In recent years, traditional linear 

and nonlinear time series analysis techniques combined with other 

signal detection techniques have been used (see, for example, the 

work in [30] ). Machinery vibration generation processes (and more 

specifically, faulty bearing vibration generation [6] ) are known to 

be non-stationary dynamic processes: hence, the problem can be 

viewed as a change of dynamics, as has been studied for many 

years [8] . Many specially designed indexes for characterizing the 

dynamics of nonlinear and chaotic systems have been proposed, 

and their applicability as features in bearing fault detection is an 

improvement that, as yet, has to be fully studied. 

RT statistics is a method rooted in chaos theory [8] that as- 

sumes that the process under study is fully described by scalar 

time series { x (i ) , i = 1 , 2 , . . . , M} , where i is the time index. Accord- 

ing to Takens’ embedding theory [32] , the corresponding m dimen- 

sional phase space can be recovered by constructing vectors from 

the time series, X k = [ x (k ) , x (k + L ) , x (k + 2 L ) , . . . , x (k + (m − 1) L )] , 

where L is the time delay. This vector sequence { X k , k = 1 , 2 , . . . , N} 
constitutes a trajectory in the phase space with N = M − (m − 1) L . 

Under normal circumstances, a dynamic process remains close to 

a fixed attractor. Thus, the time required for a dynamic process to 

return to an attractor close to the initial one (Poincaré recurrence 

time) can be used as a sign that the process has changed. To mea- 

sure this time, we proceed as follows: 

1. Fix an arbitrary reference point X 0 in this constructed phase 

space, and consider the ball centered at that point of radius r : 

B r (X 0 ) = {‖ X j − X 0 ‖ ≤ r | j ∈ [1 , N] , j � = 0 } 
2. Denote the ordered subset of the trajectory that belongs 

to B r ( X 0 ) by S 1 = { X t 1 , X t 2 , , X t i , · · · | t i ∈ [1 , N] , t i +1 > t i } . These 

points are called Poincaré recurrence points. 

3. Calculate the Poincaré recurrence times, which are defined as 

{T1 (i ) = t i +1 − t i , i = 1 , 2 , . . . }. The T1 index of this reference 

point X 0 is the mean of the generated T1 set. 

Finally, the overall T1 of the whole phase space is the average 

of the T1 indexes for all the reference points. Fig. 1 illustrates the 

T1 generation of one reference point [18] . 

According to Takens’ embedding theory, if the attractor dimen- 

sion is D (possibly a non-integer), then a constructed phase space, 

with an embedding dimension of m > 2 D + 1 (where m should be 

an integer) reveals the underlying dynamics. In the next section we 

describe a method to approximate the embedding dimension of a 

vibration generation process. 
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