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a b s t r a c t

We present in this work a two-step sparse classifier called IP � LSSVM which is based on Least Squares
Support Vector Machine (LS-SVM). The formulation of LS-SVM aims at solving the learning problem with
a system of linear equations. Although this solution is simpler, there is a loss of sparseness in the feature
vectors. Many works on LS-SVM are focused on improving support vectors representation in the least
squares approach, since they correspond to the only vectors that must be stored for further usage of
the machine, which can also be directly used as a reduced subset that represents the initial one. The pro-
posed classifier incorporates the advantages of either SVM and LS-SVM: automatic detection of support
vectors and a solution obtained simply by the solution of systems of linear equations. IP � LSSVM was
compared with other sparse LS-SVM classifiers from literature, LS2 � SVM; Pruning; Ada� Pinv and
RRSþ LS� SVM. The experiments were performed on four important benchmark databases in Machine
Learning and on two artificial databases created to show visually the support vectors detected. The
results show that IP � LSSVM represents a viable alternative to SVMs, since both have similar features,
supported by literature results and yet IP � LSSVM has a simpler and more understandable formulation.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

The success of Support Vector Machine (SVM) (Vapnik, 1995) is
mainly due to its solid formal basis and elegant approach in margin
maximization and support vectors selection. Maximum margin
hyperplane can be obtained thanks to the quadratic programming
(QP) approach to the learning problem, while support vectors are
outlined by the sensitivity of the corresponding Lagrange multipli-
ers (Vapnik, 1995), which are non-zero in the separation margin.
Nevertheless, alternatives to the quadratic programming approach,
such as the Least Squares Support Vector Machine (LS-SVM) (Suy-
kens and Vandewalle, 1999) are found in the literature. LS-SVM
yields simplicity by solving the primal problem as a system of
linear equations. The least squares (LS) solution is less computa-
tionally intensive than the quadratic programming one, but it also
results on loss of sparseness of the Lagrange multipliers vector.
Therefore, selecting LS-SVM support vectors by the non-zero crite-
rion usually results on all training patterns being considered as
support vectors, what is sometimes regarded as a drawback of
the LS approach.

The importance of an optimal number of support vectors can
not be neglected in a classification problem, since they represent
the most relevant samples for outlining the separation boundary.

Support vectors are useful for representing large static and
dynamic data sets for classification purposes and can also help in
problem analysis by pointing out to the most relevant cases (Tax
and Duin, 1999; Ganapathiraju and Picone, 2000). As a conse-
quence of this trade-off between sparseness and complexity, many
works on LS-SVM are focused on improving support vectors repre-
sentation of the LS approach (Suykens et al., 2000; Valyon and Hor-
váth, 2004; Carvalho and Braga, 2005; Carvalho et al., 2007). The
motivation behind these works are that LS-SVM may still provide
a reduced set of support vectors, by simply observing the proper
features from the LS solution.

SVM’s constrained optimization problem is formalized in the
LS-SVM approach as a least squares problem in the form
AX ¼ B, where A contains mainly kernel mapping information,
X contains the optimization parameters (Lagrange multipliers a
and bias b) and B is a vector of equality constrains. The problem
of support vectors identification in this approach can be re-
garded as the one of solving the optimization problem with
the smallest possible vector X. This would result on a maximum
margin with minimum number of support vectors. The problem
is therefore on selecting rows of X without changing the separat-
ing hyperplane and yet maintaining the original LS-SVM
formulation.

In order to avoid kernel mapping information loss due to
dimensionality reduction of A as a consequence of eliminating
rows of X, the IP � LSSVM approach presented in this paper
maintains labeling information in A for all patterns in the data
set, including those that had their corresponding rows eliminated
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in X. The problem is solved in two steps. The first one corre-
sponds to a feed-forward LS-SVM phase with the objective of
obtaining the Lagrange multipliers. In the second one, vector
elimination is followed by feed-forwarding the inputs with sup-
port vectors only. The mapping obtained in both phases should
match, despite of the dimensionality reduction in the last one.
In spite of the LS Lagrange multipliers vectors not being sparse,
their magnitude do contain boundary information. IP � LSSVM
takes advantage of this by selecting support vectors according
to the magnitudes of their Lagrange multipliers. The new crite-
rion, that is based on the support of two parallel hyperplanes,
is more consistent with the concept of a SVM classifier and has
yielded better results than those obtained with current ap-
proaches (Section 2).

Some of the most recent sparse LS-SVM classifiers found in the
literature (Section 3) were evaluated on four benchmark classifica-
tion databases (Blake and Merz, 1998) in the experiments of Sec-
tion 5: Ionosphere, Pima Indian Diabetes, Bupa Liver Disorder
and Tic Tac Toe. A high rank of similarity among the support vec-
tors obtained with IP � LSSVM and those generated with QP SVMs
was achieved for different real and synthetic data sets (Section 5).
This suggests that the proposed approach can take advantage of
least squares simplicity and still detect quadratic programming
support vectors.

2. Least Squares Support Vector Machine

Given the training set fxi; yig
N
i¼1 with xi 2 Rn and yi 2 f�1;þ

1g, the basic principle of SVMs is to map the input data into a
high dimensional feature space by means of kernel functions.
Kernel mapping results on a linearly separable problem in
the feature space that can be solved with a hyperplane in
the form xTuðxÞ þ b ¼ 0 where x is the parameter’s vector, b
is the bias term and uð�Þ is the mapping function. Margin max-
imization is obtained by minimizing the squared norm of x

while also minimizing the error of the training set. The
resulting optimization problem is usually formulated within
constrained optimization principles. The primal LS-SVMs
expression for solving this problem is presented in Eq. (1).
The slack variable ei that appears in both the cost function
and in the constrain of the equation has the function of con-
trolling the margin width or, in other words, the distance be-
tween the separating hyperplane and the two parallel
hyperplanes that encapsulate the margin. The error of the
training data is optimized by

minx;b;e JPðx; b; eÞ ¼
1
2

xTxþ c
1
2

XN

i¼1

e2
i ð1Þ

subject to

yi½xTuðxiÞ þ b� ¼ 1� ei; i ¼ 1; . . . ;N

where c is a margin parameter, analogous to SVM’s C.
After deriving the Lagrangean of Eq. (1) in relation to its primal

and dual variables, Eq. (2) is obtained.
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Eq. (2) can be written as a linear system AX ¼ B where

A ¼ 0 �YT
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Once the Lagrange multipliers and bias term are obtained from Eq.
(3), the output of the LS-SVM can be calculated by simply applying
the expression f ðxÞ ¼ sign

PN
i¼1aiyiKðx;xiÞ þ b

h i
where Kðx;xiÞ ¼

uðxÞ �uðxiÞ:
Considering that ai ¼ cei (Eq. (2)) it is possible to assume that

rarely a Lagrange multiplier a will be zero in the solution of a LS-
SVM (Suykens and Vandewalle, 1999), what makes the range of
values of a different from those obtained by the quadratic pro-
gramming solution. This happens because c does not impose a
range constraint in a like the parameter C does in QP SVMs where
0 6 a 6 C. Nevertheless, it will be shown in the next sections that
IP � LSSVM is able to express support vectors that are very close to
those obtained by QP SVMs.

3. Sparse methods for LS-SVM

The most relevant methods for enhancing sparseness in LS-SVM
Lagrange multiplier vector are described in this section. The
sparse methods presented are LS2 � SVM; Pruning;Ada� Pinv and
RRSþ LS� SVM. These methods are compared with our proposed
classifier IP � LSSVM in the results and discussions section.

3.1. LS2 � SVM

This method was proposed on Valyon and Horváth (2004), using
some ideas from RSVM (Lee, 2001), such as the elimination of col-
umns of A without eliminating the corresponding rows. Likewise
our IP � LSSVM approach, this is a two-phase method that attempts
to reduce A in order to detect the support vectors. The first phase is
carried out by reducing the dimension of matrix A in Eq. (3) with a
column elimination algorithm only (Valyon and Horváth, 2004).
The objective is to perform elementary operations in matrix A with
the aim of obtaining its echelon reduced form matrix A0. A thresh-
old function is applied to A0 so that its elements that are smaller
than a threshold � 2 R are set to zero. After obtaining the reduced
matrix A0, the corresponding columns that have only zero elements
are eliminated. Since all rows of A0 were maintained, while some
columns were removed, the new matrix A0 is not square. Therefore,
in the second step, the reduced linear system A0X ¼ B becomes
over-determined and the pseudo-inverse ðA0Þþ needs to be calcu-
lated in order to find a solution for X. This method has an extra
training parameter � that corresponds to a numeric tolerance used
by the process of reduction to the echelon form, described above.

3.2. Pruning

In this method (Suykens et al., 2000), training vectors xi are
eliminated according to the absolute value of their Lagrange mul-
tipliers jaij. The process is accomplished recursively, with gradual
vector elimination at each iteration, until a stop criterion is
reached, which is usually associated with decrease in performance
on a validation set. Vectors are eliminated by setting the corre-
sponding Lagrange multipliers to zero, without any change in ma-
trix dimensions. The resolution of the current linear system, for
each new reduced set, is needed at each iteration, and the reduced
set is selected from the best iteration. This is a multi-step method,
since the linear system needs to be solved many times until the
convergence criterion is reached.
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