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a b s t r a c t

Although many clustering methods have been presented in the literature, most of them suffer from some
drawbacks such as the requirement of user-specified parameters and being sensitive to outliers. For gen-
eral divisive hierarchical clustering methods, an obstacle to practical use is the expensive computation. In
this paper, we propose an automatic divisive hierarchical clustering method (DIVFRP). Its basic idea is to
bipartition clusters repeatedly with a novel dissimilarity measure based on furthest reference points. A
sliding average of sum-of-error is employed to estimate the cluster number preliminarily, and the opti-
mum number of clusters is achieved after spurious clusters identified. The method does not require any
user-specified parameter, even any cluster validity index. Furthermore it is robust to outliers, and the
computational cost of its partition process is lower than that of general divisive clustering methods.
Numerical experimental results on both synthetic and real data sets show the performances of DIVFRP.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Clustering is an unsupervised classification technique in pattern
analysis (Jain et al., 1999). It is defined to divide a data set into
clusters without any prior knowledge. Objects in a same cluster
are more similar to each other than those in different clusters.
Many clustering methods have been proposed in the literature
(Xu and Wunsch, 2005; Jain et al., 1999). These methods can be
roughly classified into following categories: hierarchical, partitional,
density-based, grid-based and model-based methods. However,
the first two methods are the most significant algorithms in clus-
tering communities. The hierarchical clustering methods can be
further classified into agglomerative methods and divisive meth-
ods. Agglomerative methods start with each object as a cluster,
recursively take two clusters with the most similarity and merge
them into one cluster. Divisive methods, proceeding in the oppo-
site way, start with all objects as one cluster, at each step select
a cluster with a certain criterion (Savaresi et al., 2002) and biparti-
tion the cluster with a dissimilarity measure.

In general, partitional clustering methods work efficiently, but
the clustering qualities are not as good as those of hierarchical

methods. The K-means (MacQueen, 1967) clustering algorithm is
one of well-known partitional approaches. Its time complexity is
O (NKId), where N is the number of objects, K is the number of clus-
ters, I is the number of iterations required for convergence, and d is
the dimensionality of the input space. In practice, K and d are usu-
ally far less than N, it runs in linear time on low-dimensional data.
Even though it is computationally efficient and conceptually sim-
ple, K-means has some drawbacks, such as no guarantee of conver-
gence to the global minimum, the requirement of the number of
clusters as an input parameter provided by users, and sensitivity
to outliers and noise. To remedy these drawbacks, some variants
of K-means have been proposed: PAM (Kaufman and Rousseeuw,
1990), CLARA (Kaufman and Rousseeuw, 1990), and CLARANS
(Ng and Han, 1994).

To the contrary, hierarchical clustering methods can achieve
good clustering results, but only at the cost of intensive computa-
tion. Algorithm single-linkage is a classical agglomerative method
with time complexity of OðN2 log NÞ. Although algorithm CURE
(Guha et al., 1998), one improved variant of single-linkage, can
produce good clustering quality, the worst-case time complexity
of CURE is OðN2log2NÞ. Compared to agglomerative methods, divi-
sive methods are more computationally intensive. For biparti-
tioning a cluster Ci with ni objects, a divisive method will produce
a global optimal result if all possible 2ni�1 � 1 bipartitions are con-
sidered. But clearly, the computational cost of the complete enu-
meration is prohibitive. This is the very reason why divisive
methods are seldom applied in practice. Some improved divisive
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methods do not consider unreasonable bipartitions identified by a
pre-defined criterion in order to reduce the computational cost
(Gowda and Ravi, 1995). Chavent et al. (2007) in a monothetic divi-
sive algorithm use a monothetic approach to reduce the number of
admissible bipartitions.

Most traditional clustering methods, such as K-means, DBScan
(Ester et al., 1996), require some user-specified parameters. Gener-
ally, however, the required parameters are unknown to users.
Therefore, automatic clustering methods are expected in practical
applications. Some clustering methods of this kind have been pre-
sented in the literature (Wang et al., 2007; Tseng and Kao, 2005;
Garai and Chaudhuri, 2004; Bandyopadhyay and Maulik, 2001;
Tseng and Yang, 2001). Roughly these methods can be categorized
into two groups: clustering validity index-based methods (Wang
et al., 2007; Tseng and Kao, 2005) and genetic scheme-based meth-
ods (Garai and Chaudhuri, 2004; Bandyopadhyay and Maulik,
2001; Tseng and Yang, 2001). Wang et al. (2007) iteratively apply
the local shrinking-based clustering method with different cluster
number Ks. In the light of CH index and Silhouette index, the qual-
ities of all clustering results are measured. The optimal clustering
result with the best cluster quality is selected. Tseng and Kao
(2005) use Hubert’s C index to measure a cluster strength after
each adding (or removing) of objects to (or from) the cluster. For
genetic scheme-based clustering methods, it is crucial to define a
reasonable fitness function. Bandyopadhyay and Maulik (2001)
take some validity indices as fitness functions directly. In the
methods of Garai and Chaudhuri (2004) and Tseng and Yang
(2001), although validity indices are not used directly, the fitness
functions are very close to validity indices essentially. So genetic
scheme-based methods, in different extents, are dependent on
the clustering validity indices. However, clustering validity indices
are not a panacea since an index that can deal with different shapes
and densities is not available.

Robustness to outliers is an important property for clustering
algorithms. Clustering algorithms that are vulnerable to outliers
(Patan and Russo, 2002) may use some outlier detection mecha-
nisms (Aggarwal and Yu, 2001; Ramaswamy et al., 2000; Breunig
et al., 2000; Knorr and Ng, 1998) to eliminate the outliers in data
sets before clustering proceeds. However, since this is an extra
task, users prefer to clustering algorithms robust to outliers.

In this paper, we propose an efficient divisive hierarchical clus-
tering algorithm with a novel dissimilarity measure (DIVFRP).
Based on the furthest reference points, the dissimilarity measure
makes the partition process robust to outliers and reduces the
computational cost of partitioning a cluster Ci to Oðni log niÞ. After
a data set being partitioned completely, the algorithm employs a
sliding average of differences between neighboring pairs of sum-
of-errors to detect potential peaks and determine the candidates
of the cluster number. Finally, spurious clusters are removed and
the optimal cluster number K is achieved. Our experiments demon-
strate these performances. The remaining sections are organized as

follows: algorithm DIVFRP is presented in Section 2. Section 3 pre-
sents experimental results. The performances are studied in Sec-
tion 4. Section 5 concludes the paper.

2. The clustering algorithm

We begin our discussion of the clustering algorithm DIVFRP by
considering the concept of general clustering algorithm.

Let X ¼ fx1; . . . ; xi; . . . ; xNg be a data set, where xi ¼ ðxi1; xi2; . . . ;

xij; . . . ; xidÞT 2 Rd is a feature vector, and xij is a feature. A general
clustering algorithm attempts to partition the data set X into K
clusters: C0;C1; . . . ;CK�1 and one outlier Coutlier set according to
the similarity or dissimilarity measure of objects. Generally,
Ci–;, Ci \ Cj ¼ ;, X ¼ C0 [ C1 [ . . . [ CK�1 [ Coutlier, where
i ¼ 0;1; . . . ;K � 1, j ¼ 0;1; . . . ;K � 1, i–j.

The algorithm DIVFRP comprises three phases:

1. Partitioning a data set.
2. Detecting the peaks of differences of sum-of-errors.
3. Eliminating spurious clusters.

2.1. Partitioning a data set

2.1.1. The dissimilarity measure based on the furthest reference points
Similarity or dissimilarity measures are essential to a clustering

scheme, because the measures determine how to partition a data
set. In a divisive clustering method, let Ci be the cluster to be bipar-
titioned at a step of the partitioning process, gðCx;CyÞ be a dissim-
ilarity function. If the divisive method bipartitions Ci into Ci1 and
Ci2, the pair ðCi1;Ci2Þ will maximize the dissimilarity function g
(Theodoridis and Koutroumbas, 2006). According to this definition
of dissimilarity, we design our dissimilarity measure as follows.

For a data set consisting of two spherical clusters, our dissimi-
larity measure is on the basis of the observation: the distances be-
tween points in a same cluster and a certain reference point are
approximative. We call the distances a representative. For the
two clusters, two representatives exist with respect to a same ref-
erence point. Assume that there exits a point on the line that
passes through the two cluster mean points, and both clusters
are on the same side of the point. Taking the point as the reference
point, one will get the maximum value of the difference between
the two representatives. On the contrary, if the reference point is
on the perpendicular bisector of the line segment that ends at
the two cluster mean points, one will get the minimum value.
However, it is difficult to get the ideal reference point since the
cluster structure is unknown. We settle for the furthest point from
the centroid of the whole data set instead, because it never lies be-
tween the two cluster mean points and two clusters must be on the
same side of it. Fig. 1 illustrates the dissimilarity measure based
the furthest point and how the cluster being split.
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Fig. 1. Illustration of the dissimilarity measure and a split. In (a), a data set with two spherical clusters is shown. In (b), the hollow point M is the mean point of the data set;
point 7 is the furthest point to the mean and selected as the reference point. In (c), distances from all points including the reference point to the reference are computed. In (d),
the neighboring pair < dr6; dr5 > with maximum difference between its two elements is selected as the boundary, with which the cluster is split.
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