Accepted Manuscript

Title: Phthalocyanine/Chitosan-TiO₂ photocatalysts: characterization and photocatalytic activity

Author: A. Hamdi S. Boufi S. Bouattour

PII:	S0169-4332(15)00417-1
DOI:	http://dx.doi.org/doi:10.1016/j.apsusc.2015.02.102
Reference:	APSUSC 29781
To appear in:	APSUSC
Received date:	26-11-2014
Revised date:	26-1-2015
Accepted date:	16-2-2015

Please cite this article as: A. Hamdi, S. Boufi, S. Bouattour, Phthalocyanine/Chitosan-TiO₂ photocatalysts: characterization and photocatalytic activity, *Applied Surface Science* (2015), http://dx.doi.org/10.1016/j.apsusc.2015.02.102

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Phthalocyanine/Chitosan-TiO₂ photocatalysts: characterization and photocatalytic activity

A. Hamdi¹, S. Boufi², S. Bouattour^{1*}.

1 LCI, Faculté des Sciences de Sfax, Université de Sfax, BP 802-3018, Tunisia

2 LMSE, Faculté des sciences de Sfax, Université de Sfax BP 802-3018 Sfax, Tunisia

Abstract

Chitosan (CS) was used as a template to prepare a hybrid chitosan-phthalocyanine-TiO₂ (PC/CS-TiO₂) photocatalyst at room temperature without any calcination treatment. The asprepared hybrid photocatalyst (PC/CS-TiO₂) was characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and UV–vis diffuse reflectance spectroscopy (DRS). The results of the photodegradation of aniline, used as a model pollutant, revealed that the hybrid photocatalyst (PC/CS-TiO₂) exhibited a photocatalytic activity under visible-light irradiation. The enhanced activity of the hybrid catalyst is attributed to the cooperative role of the three components of the photocatalyst; chitosan as a template to immobilize crystalline TiO₂ nanoparticles, phthalocyanine the light absorption to the visible range and TiO₂ as an acceptor of electrons generated by the photons absorption to produce superoxide radicals.

Keywords: Sol-Gel processes; Raman and IR Spectroscopy; chitosan-TiO₂

• Corresponding author. Tel.: +216 98660535; fax: +216 74274437. E-mail address: soraa.boufi@yahoo.com (S. Bouattour). Download English Version:

https://daneshyari.com/en/article/5349831

Download Persian Version:

https://daneshyari.com/article/5349831

Daneshyari.com