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a b s t r a c t 

The problem of training autoencoders (with logistic regression as the classification layer) on sets of small 

sizes is considered on the example of image classification and scene categorization tasks. Conventional 

autoencoders with uniform priors usually fail to learn useful features from few samples. A possibility to 

overcome this difficulty is considered on the example of a proposed meta-model generating autoencoders 

from a vector of meta-parameters of much smaller dimension than the number of autoencoder parame- 

ters. Handcrafted image features designed for the task of scene classification are used as the baseline for 

comparison. Unbiased autoencoders showed the worst results on tiny training sets and seem to require 

much larger sets to outperform other methods. On the other hand, the developed biased autoencoders 

work better on the training sets of small sizes, but have much less discriminative power, since the con- 

sidered meta-model assigns strictly zero probabilities to a large subset of solutions. General possibility of 

increasing training speed (in term of consumed training patterns) of autoencoders is confirmed. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Selecting appropriate features is the essential part of creat- 

ing efficient image recognition methods. Previously, it was well 

acknowledged that discriminative features should be learned [1] . 

However, a lot of computer vision methods are still based on hand- 

crafted image representations, which are usually task-dependent 

(e.g. compare [2,3] ). 

The most conventional approach to feature learning is based on 

neural networks, which have been applied in image recognition for 

a long time (e.g. [4] ). Recent success in feature learning in par- 

ticular for image recognition is connected to deep learning [5–8] . 

Deep learning exploits the fact that adding extra hidden layers in a 

multi-layer classifier helps to learn more complex features and to 

improve their representational power. The key problem here is to 

train such classifiers. Earlier, training of shallow feed-forward net- 

works with the back-propagation algorithm yielded better results 

than training deep networks in the same manner, since bottom 

layers are difficult to train because of exponentially quick gradient 

vanishing, so these layers usually correspond to random (not useful 

or even harmful) nonlinear feature mappings. Successful training 

✩ This paper has been recommended for acceptance by A. Petrosino. 
∗ Corresponding author. Tel.: + 7 8123157534. 

E-mail addresses: pas.aicv@gmail.com (A. Potapov), maxim.peterson@gmail.com 

(M. Peterson). 

of such networks was achieved [9–11] with the help of consequent 

unsupervised pre-training of each hidden layer, and the use of su- 

pervised training afterwards. 

Another component that is also considered as crucial for deep 

learning is the usage of large training sets [10] . Actually, even suc- 

cessful supervised training of multi-layer perceptrons (resulting in 

a very low 0.35% error rate on the MNIST benchmark) has been 

also achieved recently [12] using intensive training of perceptrons 

with patterns, relevantly transformed with affine and elastic image 

deformations. Even overlearning is avoided in spite of extremely 

large number of neurons (free parameters), because “the continual 

deformations of the training set generate a virtually infinite supply 

of training examples” [12] . 

Deep learning methods don’t simply benefit from using large 

datasets, but require them. They cannot outperform handcrafted 

representations being trained on small sets from scratch (e.g. [13] ). 

The necessity of large training sets cannot be considered as an ad- 

vantage, since only small sets can be available and invariants (nec- 

essary for generating deformed patterns) can be unknown in some 

applications. At the same time, humans have capabilities to learn 

complex invariant features just from few examples [14] . 

Thus, the problem of learning from training sets of small sizes 

is crucial. In this paper, we consider this problem on an example of 

autoencoders with logistic regression as the classification layer ap- 

plied to the task of image classification. Pixel-level and handcrafted 

features are used for experiments. 
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Fig. 1. Conventional autoencoder structure. 

2. Autoencoders 

2.1. Conventional autoencoders 

Single autoencoder has input, hidden, and output reconstruc- 

tion layers ( Fig. 1 ). The input layer accepts a vector x ∈ [ 0 , 1 ] N 

of dimension N , which is transformed to activities of neurons of 

the hidden layer y = s ( Wx + b ) , y ∈ [ 0 , 1 ] d , corresponding to the 

new features (hidden representation), where W is a d × N matrix 

of connection weights, b is a bias vector, and s is the activation 

(sigmoid) function. Activities of neurons of the last layer are calcu- 

lated similarly as z = s ( W 

′ y + b 

′ ) , z ∈ [ 0 , 1 ] N . Autoencoders differ 

from other feed-forward networks in that they are trained to min- 

imize difference between x and z (for patterns from a training set), 

that is W ’ is the matrix of the reverse mapping. W ’ is frequently 

taken as W 

T . One can calculate gradient of the reconstruction er- 

ror relative to connection weights and bias vectors and to train the 

autoencoder using stochastic gradient descent. 

In the case of stacked autoencoders, each autoencoder on the 

next level takes outputs of the hidden (not reconstruction) layer of 

the previous autoencoder as its input performing further nonlinear 

transformation of constructed latent representation of the previous 

level. Each next autoencoder is trained after training the preceding 

autoencoder. Outputs from the hidden layer of the last autoencoder 

are passed to the supervised feed-forward network. 

Multinomial logistic regression computes probabilities of a pat- 

tern to belong to different classes based on softmax applied to lin- 

ear combinations of features: 

p(y = c| x , W ) = 

exp (w 

T 
c x + b c ) 

∑ C 
c ′ =1 exp (w 

T 
c ′ x + b c ′ ) 

, (1) 

where x is the input vector, c is the class index, C is the total num- 

ber of classes, W is the weight matrix composed by C vectors w c , 

and b c are biases. Parameters of the classifier are learned using 

stochastic gradient descent minimizing negative log-likelihood. 

One common modification is denoising autoencoders [7] , in 

which reconstruction during training is calculated using patterns 

with introduced noise, but reconstruction errors are calculated rel- 

ative to initial patterns without this artificial noise. Thus, a denois- 

ing autoencoder learns to reconstruct a clean input from a cor- 

rupted one. This is also a way to virtually increase the size of the 

training set by deforming input patterns, but not in so problem- 

specific fashion. 

We used a modified approach, which consists in construct- 

ing multi-column autoencoders. Multi-column deep neural net- 

works have already been used (e.g. [5] ), but each column in such 

Fig. 2. Multi-column stacked autoencoder with logistic regression layer. 

networks is usually trained as a separate deep network, and pre- 

dictions of all columns are then averaged. We use the modification 

[13] , in which the number of columns corresponds to the num- 

ber of classes. Each column is trained for its own class to pro- 

duce some non-linear features. These features are then gathered 

and passed as the input to the logistic regression layer ( Fig. 2 ). 

We will refer to this type of autoencoders as unbiased autoen- 

coders since uniform priors are used for them. 

2.2. A meta-model for autoencoders 

Poor generalization on training sets of small sizes follows from 

high prior uncertainty in model parameters (model information ca- 

pacity). Autoencoders applied to the raw image features are char- 

acterized by the large parameter space with uniform priors. 

Some non-uniform priors (e.g. in the form of a meta-model 

generating autoencoders) can be introduced to reduce this uncer- 

tainty. In this paper, we consider one such possible meta-model as 

an example. Of course, since this model doesn’t implement univer- 

sal priors [15] , it has a limited applicability. However, it can show 

principal possibility of reducing required sizes of training sets. 

In general, in order to introduce a meta-model one needs to 

specify a distribution over model parameters conditioned by meta- 

parameters, e.g. p ( W , W 

′ , b , b 

′ | χ), where χ is a vector of meta- 

parameters. However, we consider a deterministic meta-model, 

which assigns zero probability to instantiations of autoencoders 

that can’t be generated by it. 

For example, suppose we estimate parameters of the normal 

distribution. Following Bayes’s rule we should multiply the like- 

lihood P = ( { x }| x 0 , σ ) by the prior P = ( x 0 , σ ) , but how to de- 

fine the prior? If we ignore priors, we’ll get the maximum like- 

lihood approach. Alternatively, one can define the prior probabil- 

ity P = ( x 0 , σ ) in terms of some other distribution. For instance, 

priors for the normal distribution are often defined in terms of 

the gamma distribution, which is the conjugate distribution for the 

normal one. In other words, the gamma distribution has its own 

parameters, which can be considered as meta-parameters for the 

normal distribution. 

One can also consider different priors while training autoen- 

coders. Minimization of the reconstruction MSE is equivalent to 

using the maximum likelihood approach with uniform priors. Dif- 

ferent types of regularization (e.g. denoising [16] or sparse coding 

[17] ) can be interpreted as implicit introduction of some priors. 

We propose to introduce priors by explicitly defining meta-models, 

and consider one example of highly non-uniform priors. 
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