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a b s t r a c t 

We tackle the problemof extracting explicit discriminative feature representation for manifold features. 

Manifold features have already been shown to have excellent performance in a number of image/video 

classification tasks. Nevertheless, as most manifold features lie in a non-Euclidean space, the existing 

machineries operating in Euclidean space are not applicable. The proposed explicit feature representa- 

tion enables us to use the existing Euclidean machineries, significantly reducing the challenges of pro- 

cessing manifold features. To that end, we first embed the manifold features into a Reproducing Kernel 

Hilbert Space that can encode the manifold geometry. Then, we extract the explicit representation by 

using the empirical kernel feature space, an explicit lower dimensional space wherein the inner product 

is equivalent to the corresponding kernel similarity. The final feature representation is then derived from 

a linear combination of multiple explicit representations from various manifold kernels. We propose a 

max-margin approach to learn an effective linear combination that will improve the feature discrimina- 

tive power. Evaluations in various image classification tasks show that the proposed approach consistently 

and significantly outperforms recent state-of-the-art methods. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Representing image/video data using manifold features that 

lie in a non-Euclidean space often naturally arises in various 

applications such as pedestrian detection in Tuzel et. al. [32] and 

image set classification in Turaga et. al. [31] . Existing classification 

approaches such as Support Vector Machine (SVM) and Linear 

Discriminant Analysis (LDA) are not directly applicable to such 

features due to the non-Euclidean nature of the underlying space. 

This limits the applicability of existing machineries operating in 

Euclidean space. 

This limitation gives a strong motivation to design a feature 

representation that is Euclidean but still captures the mani- 

fold geometry [11,26] . For example, Hong et. al. [11] proposed 

a second order statistic based region descriptor, named Sigma 

Set. The Sigma Set descriptor lies in Euclidean space and has 

similarity to covariance descriptors which have Riemannian struc- 
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ture. Unfortunately, in most cases, these works are specific to a 

particular manifold, and thus it is not trivial to extend to the other 

Riemannian manifolds. 

Manifold features can also be accurately studied by first em- 

bedding them into a Reproducing Kernel Hilbert Space (RKHS) and 

then applying kernel-based approaches [10,13,34] . The embedding 

function, which normally is non-linear, can encode the Rieman- 

nian geometry by exploiting typical Riemannian metrics [10,23] . 

As Euclidean geometry applies in the Hilbert space, this effectively 

decouples machine learning from data representation [15] . Unfor- 

tunately, one may still need significant effort to develop existing 

methods for kernel space [5] . To that end, Vedaldi et. al. [33] pro- 

posed explicit kernel feature maps for the additive class of kernels 

such as the intersection, Hellinger’s and χ2 kernels. After mapping 

the input features into the explicit kernel feature space, one can 

apply any efficient learning method such as the linear SVM. Un- 

fortunately, this approach cannot be applied directly for manifold 

features as the explicit feature maps of [33] are valid only for fea- 

tures in Euclidean space. 

Inspired from the work of Vedaldi et. al. [33] , we aim to 

learn an explicit discriminative feature representation that has 

Euclidean geometry but still encodes the manifold topological 

http://dx.doi.org/10.1016/j.patrec.2016.06.006 

0167-8655/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.patrec.2016.06.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2016.06.006&domain=pdf
mailto:a.wiliem@uq.edu.au
mailto:arnold.wiliem@ieee.org
mailto:raviteja@umd.edu
mailto:lovell@itee.uq.edu.au
http://dx.doi.org/10.1016/j.patrec.2016.06.006


122 A. Wiliem et al. / Pattern Recognition Letters 80 (2016) 121–128 

structure. Having such a feature will significantly reduce the chal- 

lenges present in processing manifold features. There are two is- 

sues that need to be addressed: (1) How to extract the Euclidean 

features that still encode the manifold topological structure and 

(2) once extracted, how to improve the feature discriminative 

power. 

Using explicit kernel feature space for manifold features seems 

an ideal solution for our aim as it is possible to encode mani- 

fold geometry into RKHS and hence once mapped into the explicit 

feature space, the explicit representation still captures the mani- 

fold geometry information. Nevertheless, it is still not clear how 

to develop the explicit kernel feature map for manifold features. 

Therefore, we opt to use the empirical kernel feature space, first 

introduced in [27] . The Empirical kernel Feature Space (EFS) is a 

good approximate solution to the pre-image problem that specifi- 

cally aims to find the existence of an explicit representation of data 

points defined in the kernel space [27] . The space can be consid- 

ered as an explicit lower dimensional Euclidean space wherein the 

dot product between two points equals the corresponding kernel 

similarity function. As the dot product is preserved, then the dis- 

tance is also preserved. 

In order to further improve the feature discrimination, we de- 

rive our features by combining multiple EFS from various kernels 

defined over the manifold space. Here, our idea is somewhat sim- 

ilar to the Multiple Kernel Learning (MKL) problem [4,6,18] . The 

difference is, MKL aims to find discriminative kernel from a con- 

vex combination of the given kernels. In our case, we learn the ex- 

plicit discriminative feature representation from multiple EFS. The 

optimal combination is jointly learned with a max-margin classi- 

fier. We draw our inspiration from the recent method proposed 

in [36] that describes Multiple Kernel Learning in the empirical 

kernel feature space using a Modification of the Ho-Kashyap algo- 

rithm (MultiK-MHKS). In a similar manner to the canonical cor- 

relation analysis, MultiK-MHKS aims at finding a transformation 

function which maximizes the correlation of explicit feature rep- 

resentations of different kernels. On the other hand, we directly 

model the learned features as a linear combination of EFS. As will 

be shown in the experiments section, our approach is more effec- 

tive than MultiK-MHKS. 

It is noteworthy to mention that our work primarily focuses on 

manifold features whose underlying geometry is known. In con- 

trast to our work, the manifold learning techniques described in 

Lin et. al. [20] and Roweis and Saul [25] perform non-linear dimen- 

sionality reduction wherein the low dimensional projection space 

lie on a non-linear manifold. In other words, these techniques as- 

sume the underlying manifold was unknown. 

Contributions: Our main contribution comes from the pro- 

posed max-margin learning approaches to extract the explicit 

discriminative features representation. We show empirically that 

the extracted features are more discriminative than the recent 

state-of-the-art approaches. To the best of our knowledge, this is 

one of the first studies to extract explicit kernel feature space for 

manifold features. We note that, although our proposed approach 

could be applied to any other Euclidean features, the benefit 

of using our approach is more significant when it is applied to 

manifold features due to the non-linear topological structure 

presenting significant challenges in processing manifold features. 

Fig. 1 illustrates our proposal. 

Organization: We first discuss related works in Section 2 . In 

Section 3 , we describe the procedure to embed data from an RKHS 

into the corresponding EFS. We describe the proposed approach 

in Section 4 . Section 5 provides a brief overview of two Rieman- 

nian manifold features commonly used for computer vision tasks. 

Section 6 presents our experimental results comparing the pro- 

posed approach with various state-of-the-art approaches on four 

benchmark datasets and Section 7 concludes the paper. 
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Fig. 1. Illustration on how the proposed explicit discriminative feature representa- 

tion is extracted. First, each manifold point is mapped into several E mpirical kernel 

F eature S pace (EFS). Then, the final representation is derived from a linear combi- 

nation of EFS representations. 

2. Related works 

Euclidean features for Riemannian manifolds: There are vari- 

ous works focusing on extracting Euclidean features that encode 

manifold topology [11,26] . Similar to the Sigma Set, San Bia- 

gio et. al. proposed descriptors that capture non-linear relation- 

ships which are not captured by covariance descriptor [26] . Their 

descriptors are also Euclidean which makes it convenient to pro- 

cess. Unfortunately, most of these works primarily aim at a partic- 

ular manifold such as the Symmetric Positive Definite (SPD) mani- 

folds. Another line of work is to flatten the manifold space by em- 

bedding the manifold points into a designated tangent space [1] . 

Nevertheless, the tangent space embedding may introduce signifi- 

cant distortions that could affect the classification. 

Fusing multiple views: The idea of fusing information from mul- 

tiple sources to achieve better performance has been extensively 

studied both algorithmically and theoretically [29] . For instance, 

when each source of information can be represented using a ker- 

nel (also referred to as base kernel), one can use Multiple Kernel 

Learning (MKL) which selects a kernel from a family of convex 

combination of M based kernels and learns a predictor based on 

the selected kernel [4,6,18] . These two tasks can be performed ei- 

ther individually in stages [6] or simultaneously [18] . 

Our aim is similar to MKL framework as we aim to combine 

information extracted from multiple kernels and learn a predictor 

from the combined space. On the other hand, our approach differs 

from MKL and multi-view learning in two aspects: (1) the com- 

bination is done in the empirical feature spaces of the associated 

kernels, and (2) unlike the multi-view learning methods, our pro- 

posal only learns one predictor. 

Multiple Kernel Learning in manifold space: The idea of com- 

bining multiple kernels has also been studied for Riemannian 

manifolds with known geometry [14,34] . For instance, Vemula- 

palli et. al. [34] used the manifold structure as a regularizer. More 

precisely, they found a linear combination of basis kernels such 

that the distance induced by the combined kernel is close to the 

manifold geodesic distance. Unfortunately, the regularization may 

prevent the method from picking useful kernels to achieve better 

performance in a given task. In [14] , Jayasumana et. al. focused 

on selecting the optimal parameters for radial basis kernels on 

Riemannian manifolds. They specifically showed that radial kernels 

can be expressed in a simple parametric form. Then a linear SVM 

framework could be used to automatically obtain optimal param- 

eters for the kernels. Different from their work, we mainly focus 

on extracting explicit Euclidean features that still encode manifold 

geometry and improve the discrimination by combining multiple 
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