
Pattern Recognition Letters 80 (2016) 216–223

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

Fast binary image set operations on a run-based representation

✩

Siyu Guo

∗, Weifang Zhou , He Wen , Mengxia Liang

College of Electrical and Information Engineering, Hunan University, Changsha 410082, China

a r t i c l e i n f o

Article history:

Received 31 December 2015

Available online 14 July 2016

Keyword:

Set operation

Logical operation

Run

Binary image

a b s t r a c t

Set operations are common processing of binary images. Though set operations implemented through

naïve pixel-by-pixel logical operations are usually efficient, applications exist where the number of re-

quired set operations is large and faster set operations are needed. For such applications, a run-based

representation, run forest, of binary images is proposed, and commonly used set operations of intersec-

tion, union, complementation, symmetric difference and set difference are realized on it. Run forests are

lists of columns, which are also lists of runs in an image column. Spatial relations of two runs are ex-

haustively enumerated. A data structure called run iterator is designed to elegantly handle the operations

of two runs. Run operations themselves consist of logical operations and assignments of integers, and can

thus be very fast. Taking advantages of the simplicity of run operations, as well as the nature of run for-

est being compressive and well ordered, the set operations are efficiently realized. Experimental results

show that although conversions of binary images to and from run forests cause computational overheads,

this can be quite compensated during the computation of enough set operations, making the proposed

method a suitable choice for applications with many set operations among largely fixed binary images,

or applications using the run forest as the base representation throughout.

© 2016 Published by Elsevier B.V.

1. Introduction

Set operations of binary images are commonly used low level

image processing operations. Since they can equivalently be ex-

pressed in logical terms, they are sometimes called as logical op-

erations as well. Their applications are abundant in a wide range

of fields such as region-of-interest manipulation, shape representa-

tion and reconstruction, and object recognition.

The most commonly used implementation of binary image set

operations is to use pixel-by-pixel logical operations. Other ap-

proaches also exist, usually based on a specific binary image repre-

sentation data structure. Chain codes [8] , runs [15] and quadtrees

[17] are examples of the elementary data structures for binary im-

ages widely used in image processing tasks, while various repre-

sentations, though not frequently appearing in the recent litera-

ture, are also available. Some authors categorized the binary image

representations into three types: trees, strings, and sets of codes

[18, 25] . Besides quadtrees, binary trees are also used to encode

binary images, which are constructed by recursively splitting an

image into two halves along the horizontal and vertical directions

alternately [13] . Tree structures suffer from memory costs on inter-

nal node storage and the pointers linking the nodes together, thus

✩ This paper has been recommended for acceptance by Punam Kumar Saha.
∗ Corresponding author.

E-mail address: syguo75@163.com (S. Guo).

for the purpose of compression, leaf nodes of a tree are numeri-

cally encoded and consequently result in a set of codes denoting

the original binary image. Quadtrees, octrees, binary trees can be

converted into sets of codes following this idea [9,20,21] . Of course,

codes can be generated not only from trees. For examples, Sarkar

[18] and Wu and Chung [25] treat binary images as truth tables to

derive codes from Boolean expressions. As for strings, other than

the widely used Freeman chain codes, there are strings constructed

from S-trees or pixel trees such as quadtrees [4,6,24] . It should be

noticed that the above mentioned tree- and run-based represen-

tations all make use of a certain decomposition of the binary im-

age. Other decomposition ways can be adopted, and new repre-

sentations can be derived, e.g., Spiliotis and Mertzios [22] utilized

a block representation of binary images. Suk et al. [23] surveyed a

number of binary image decomposition methods. Though mathe-

matical morphological operation results such as skeletons and an-

alytical boundary representations such as splines can also be used

to describe regions (shapes) in binary images, the set operations

concerned in this paper are not easily performed on these repre-

sentations, and we thus omit the introduction to the related liter-

ature.

Efficient binary image processing and analysis methods have

been built upon these representations, such as geometric features,

e.g., area and centroid, computation [19, 20, 22] , geometric trans-

formations, e.g., translation, scaling, rotation, and mirroring [3,20] ,

connected component labeling [16] , and so on. Several papers are

http://dx.doi.org/10.1016/j.patrec.2016.06.029

0167-8655/© 2016 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.patrec.2016.06.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2016.06.029&domain=pdf
mailto:syguo75@163.com
http://dx.doi.org/10.1016/j.patrec.2016.06.029

S. Guo et al. / Pattern Recognition Letters 80 (2016) 216–223 217

directly related to our topic. In [22] , the set difference operation,

AND, OR, XOR, and NOT operations on block-represented binary

images were given. AND, OR, and NOT operations on Interpolation-

Based Bintree-based and Boolean function-encoded binary images

were also proposed in [11] and [19] , respectively. In [7] , a run-

based XOR operation implementation was given, whose basic idea

is similar to ours, though in this paper we present a more com-

prehensive and elegant way to handle all the five commonly used

set operations of binary image, i.e., AND, OR, XOR, NOT, and set

difference.

During the search of related literature, we have noticed that

the articles retrieved are relatively old. We give a possible explana-

tion as follows. The set operations of binary images themselves can

usually be efficiently done through the naïve pixel-by-pixel logical

operations. Some operations might be speeded up by using one

of the mentioned more sophisticated representations, but if the

required representations of the binary images under concern are

not readily available, the conversion from the binary images to the

specific representation can be time consuming, and the speedup is

not sufficient to compensate this cost. So the related researches are

rare in the recent literature.

However, there exist applications where the compressed ver-

sions of the binary images involved in the set operations are at

hand. One such application is given in the paper as an application

example, which tries to find out the medial axes of plant leaves

through leaf region reconstruction using skeletal information. In

these applications, a large number of set operations are required,

and during the whole computation, the elementary regions remain

unchanged and can be converted into the desirable representation

before the computation begins. In this scenario, the conversions

may be worthwhile.

In this paper, we proposed the common set operations based on

a run representation of binary images. This representation, called

run forest, is essentially a list of image columns, any of which in

turn is also a list of runs in the image column. The possible spa-

tial relations of two runs are exhaustively summarized, and the run

operations corresponding to the interesting set operations are de-

fined. By considering the cases of every spatial relations of runs

and introducing a run iterator data structure, the set operations of

two columns are elegantly realized. Since run representation is a

compact representation of the original binary images, the set op-

erations implemented upon run forests can be significantly faster

than the pixel-by-pixel logical operation implementation.

The paper is organized as follows. In Section 2 we describe

run forest structure, the run-based representation of binary im-

ages used to accelerate the set operations. An exhaustive enumer-

ation of spatial relations of two runs is presented in Section 3 . De-

tails of operations of AND, OR, XOR, NOT, and set difference imple-

mented upon run forests are given in Section 4 . In Section 5 , syn-

thetic and application experiments are introduced and conducted,

with results shown and discussed. Finally, conclusions are drawn

in Section 6 .

2. Run forest representation of binary images

Runs are maximal sequences of logic 1 pixels (feature pixels) in

a column (or row) in a binary image. For a given column, we char-

acterize each run by two integers: i S , the row index of the starting

pixel, and i E , the row index of the logic 0 pixel (background pixel)

following the ending pixel of the run. The runs in a column are

linked in ascending order of i S into a list L R . L R and the column

index, j C , form the column structure. And the column structures in

a binary image where runs exist are again linked in ascending or-

der of j C into a list L C . In order to reconstruct the binary image, L C
and the height and width of the image, H and W , respectively, are

encapsulated into a structure that we henceforth call the run forest

Fig. 1. Illustration of the run forest structure with an example. A run forest is a

linked list, L C , of columns in ascending order of column index, combined with the

height H and width W of the image. A column is also a linked list, L R , of runs in the

image column, with the column index j C stored together. Runs are characterized by

i S , its first pixel index, and i E , the index of the pixel following the last pixel. Dark

squares denote feature pixels.

(RF) of the binary image. The structure of RF is illustrated with an

example in Fig. 1 . The conversions of binary images to and from

RFs are easy, so we omit the algorithm steps for these conversions

in this paper.

During the run operations, it is convenient to define a “null”

status of a run, which means the run does not contain any valid

information. We set i E as 0 to indicate that the run be null.

3. Spatial relations between two runs

In this section we consider the spatial relations of two runs in

any same given columns from two binary images. These relations

give cases exclusively treated in the run operations. Thirteen spa-

tial relations are defined:

Let r A and r B be two runs. The relations < S (strictly above),

< A (adjacently above), < O (overlapped above), < T (top-aligned

above), < B (bottom-aligned above), < I (strictly including), = (equal),

> I (strictly included), > B (bottom-aligned below), > T (top-aligned be-

low), > O (overlapped below), > A (adjacently below), and > S (strictly

below) are defined as follows.

If r A is null, r A > S r B ;

otherwise, if r B is null, r A < S r B ;

otherwise, if r A . i E < r B . i S , r A < S r B ;

otherwise, if r A . i E = r B . i S , r A < A r B ;

otherwise, if r A . i S < r B . i S and r A . i E < r B . i E , r A < O r B ;

otherwise, if r A . i S < r B . i S and r A . i E = r B . i E , r A < B r B ;

otherwise, if r A . i S < r B . i S and r A . i E > r B . i E , r A < I r B ;

otherwise, if r A . i S = r B . i S and r A . i E < r B . i E , r A < T r B ;

otherwise, if r A . i S = r B . i S and r A . i E = r B . i E , r A = r B ;

otherwise, if r A . i S = r B . i S and r A . i E > r B . i E , r A > T r B ;

otherwise, if r A . i E < r B . i E , r A > I r B ;

otherwise, if r A . i E = r B . i E , r A > B r B ;

otherwise, if r A . i S < r B . i E and r A . i E > r B . i E , r A > O r B ;

otherwise, if r A . i S = r B . i E , r A > A r B ;

otherwise, r A > S r B .

These relations are also illustrated in Fig. 2 . It can be seen in

Fig. 2 that when we say r A < ∗ r B , the symbol “< ” means that run

r A is somehow visually “above” run r B . On the contrary, “> ” implies

Download English Version:

https://daneshyari.com/en/article/535028

Download Persian Version:

https://daneshyari.com/article/535028

Daneshyari.com

https://daneshyari.com/en/article/535028
https://daneshyari.com/article/535028
https://daneshyari.com

