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a b s t r a c t 

The k -Nearest Neighbor ( k NN) classifier is an elegant learning algorithm widely used because of its simple 

and non-parametric nature. However, like most learning algorithms, k NN cannot be directly applied to 

data plagued by missing features. We make use of the philosophy of a Penalized Dissimilarity Measure 

(PDM) and incorporate a PDM called the Feature Weighted Penalty based Dissimilarity (FWPD) into k NN, 

forming the k NN-FWPD classifier which can be directly applied to datasets with missing features, without 

any preprocessing (like marginalization or imputation). Extensive experimentation on simulations of four 

different missing f eature mechanisms (using various datasets) suggests that the proposed method can 

handle the missing feature problem much more effectively compared to some of the popular imputation 

mechanisms (used in conjunction with k NN). 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

1.1. Overview 

The k -Nearest Neighbor ( k NN) classifier, dating back to [11] , is 

one of the oldest as well as simplest pattern classification tech- 

niques. Its continued popularity is owing to its simple yet effec- 

tive philosophy, competitive performance, ease of implementation, 

and non-parametric computational basis, i.e. the fact that the k NN 

classifier does not make any prior assumptions about the class 

distributions. Cover and Hart [7] showed that the 1NN classifier 

achieves a probability of error less than twice the Bayes proba- 

bility of error, when the size of the training set tends to infinity. 

The k NN classifier functions by finding the k nearest neighbors of a 

test point from among a set of training data instances with known 

class labels. It then assigns the test point to the class correspond- 

ing to the majority of the k nearest neighbors, i.e. the class label 

predicted for the test point is that of the majority of its k nearest 

neighbors. The only parameter involved is k , which should be cho- 

sen so that k → inf and 

k 
n 1 

→ 0 , as the number of training points 

n 1 → 0. 

Real applications of classification often have to deal with 

datasets consisting of some instances having one or more unob- 

served features. This is termed as missingness . There can be a vari- 
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ety of reasons behind missingness, such as data input errors, inac- 

curate measurement, equipment malfunction or limitations, mea- 

surement noise, data corruption, etc. This is called unstructured 

missingness as it does not have any structural implications on the 

dataset [5,17] . Missingness may also occur if all features are not 

defined for all the data points in a dataset. Such missingness is 

referred to as structural missingness or absence of features [6] . 

For example, credit-card details may not be defined for non-credit 

clients of a bank. This paper deals with unstructured missing- 

ness, hereafter referred to simply as missingness. Little and Rubin 

[15] proposed a three-fold classification of missingness, viz. Miss- 

ing Completely At Random (MCAR), Missing At Random (MAR), and 

Missing Not At Random (MNAR). Features are said to be MCAR 

when the likelihood of a feature being unobserved for a particular 

data instance depends neither on the observed nor on the unob- 

served features of that instance. For example, in an annual income 

survey, a citizen is unable to participate owing to reasons unre- 

lated to the survey, such as traffic or schedule problems. Features 

are MAR when the missingness depends only on the observed fea- 

tures of an instance, and not on the unobserved features. Suppose, 

college-goers are less likely to report their income than office- 

goers. But, whether a college-goer will report his/her income is in- 

dependent of the actual income. MNAR refers to the case where 

missingness is subject to the unobserved features of an instance. 

For example, people with lower earnings are less likely to report 

their incomes in the annual income survey. 

There are two main traditional approaches to missing feature 

handling, namely marginalization and imputation . Marginalization 
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refers to the practice of excluding data instances with missing fea- 

tures. This leads to loss of additional data, and will be ill-advised in 

applications where a sizable portion of the data have unobserved 

values. Therefore, most of the research on missing feature handling 

has been focused on imputation techniques which aim to estimate 

the missing features on the basis of the observed features. Com- 

mon imputation methods [10] involve filling the missing features 

of data points with zeros (Zero Imputation (ZI)), or the averages 

of the corresponding features over the entire dataset (Average Im- 

putation (AI)). Class Mean Imputation or Concept Mean Imputa- 

tion (CMI) is a slight modification of AI where a missing feature is 

filled with the average of the feature over all instances within the 

same class as the instance being filled. Another simple yet effec- 

tive imputation method is k -Nearest Neighbor Imputation ( k NNI) 

[9] , where a missing feature of a data instance is estimated to be 

the average of corresponding features of its k nearest neighbors (on 

the observed subspace). Rubin [18] suggested Multiple Imputation 

(MI), a technique where the missing values are imputed by a few 

(typically 5–10) distinct estimates; the actual number depending 

on the percentage of missingness. Such a method of repeated im- 

putation is capable of incorporating (in the learning process) the 

uncertainty inherent in imputation. Some more sophisticated tech- 

niques have been developed, especially by the bioinformatics com- 

munity, which attempt to estimate the missing features by exploit- 

ing the correlations between data. Troyanskaya et al. [20] proposed 

a weighted variant of k NNI along with a Singular Value Decompo- 

sition based Imputation (SVDI) technique, which performs regres- 

sion based estimation of the missing values using the k most sig- 

nificant Eigenvectors of the dataset. The Least Squares Imputation 

(LSI) technique [4] is another such technique. Sehgal et al. [19] fur- 

ther combined LSI with Non-Negative LSI (NNLSI) to create the 

Collateral Missing Value Estimation (CMVE) algorithm. 

Despite the simplicity and elegance of the k NN classifier, there 

has been limited research on its ability to handle missingness. 

Perhaps, this is because the said classifier is known to be very 

sensitive to noise [2] . Since imputation methods often introduce 

noise into the dataset due to noisy estimations [15] , imputation 

is not the best approach to adapt the k NN classifier to missing- 

ness. Acuña and Rodriguez [1] published a comparative study on 

the effects of some imputation methods on k NN classifier and Lin- 

ear Discriminant Analysis (LDA). The former technique is observed 

to produces higher error compared to the latter. García-Laencina 

et al. [12] proposed a mutual information based k NN algorithm to 

simultaneously perform classification and imputation. Ashraf et al. 

[3] proposed a scheme to iteratively employ 1NNI and k NN classi- 

fication until a desired level of accuracy is achieved (did not pro- 

vide any guidelines for the selection of an appropriate accuracy 

threshold). Liu et al. [16] proposed an adaptive imputation scheme, 

where the k NN algorithm is used as the underlying classifier. 

1.2. Motivation 

Imputation methods introduce noise into the dataset and are 

also known to be less effective when features are MNAR [13] . 

Moreover, many of the more sophisticated imputation methods are 

computationally expensive and do not scale well to large datasets. 

Hence, a more suitable alternative way of adapting the learning 

methods to missingness is to modify the underlying distance or 

dissimilarity measure , so that the modified dissimilarity measure 

uses the common observed features (features observed for both 

instances) to approximate the distances between two data in- 

stances if they were to be fully observed. Such approaches nei- 

ther require marginalization nor imputation, while possibly yield- 

ing results better than both. Let us look at an example. Let 

X f ull = { x 1 = (1 , 5) , x 2 = (2 , 3) , x 3 = (3 , 6) } be a dataset consisting 

of three points in R 

2 . Then, d E (x 1 , x 2 ) = 

√ 

5 and d E (x 1 , x 3 ) = 

√ 

5 

Fig. 1. Comparison of various techniques for handling missing features. 

(where d E ( x i , x j ) denotes the Euclidean distance between the fully 

observed points x i and x j in X full ). Now, let the 1st coordinate 

of the point (1, 5) be unobserved. Then, the resulting dataset, 

on which learning must be undertaken, is X = { x ′ 1 = (∗, 5) , x 2 = 

(2 , 3) , x 3 = (3 , 6) } , where ’ ∗’ denotes the unobserved value. Then 

the filled in datasets X ZI , X AI , and X 1 NNI obtained respectively using 

ZI, AI and 1NNI ( k NNI with k = 1 ) are 

X ZI = { ̂  x 1 = (0 , 5) , x 2 = (2 , 3) , x 3 = (3 , 6) } , 
X AI = { ̂  x 1 = (2 . 5 , 5) , x 2 = (2 , 3) , x 3 = (3 , 6) } , 
and X 1 N N I = { ̂  x 1 = (3 , 5) , x 2 = (2 , 3) , x 3 = (3 , 6) } , 
where ˆ x 1 denotes an estimate of x 1 . Since the observed distance 

between two data instances is a lower bound on the fully ob- 

served distance between them, adding a suitable penalty to this 

lower bound can yield a reasonable approximation of the actual 

distance. We call this a Penalized Dissimilarity Measure (PDM). Let 

the penalty between x ′ 1 and some other x i ∈ X be given by the 

ratio of the number of features which are unobserved for at least 

one of the two data instances and the total number of features in 

the dataset. Then, the dissimilarity δ′ ( x 1 , x i ) between x ′ 1 and some 

other x i is 

δ′ (x 1 , x i ) = 

√ 

(x 1 , 2 − x i, 2 ) 2 + 

1 

2 

, 

where the 1 in the numerator of the penalty term is due to the 

fact that the 1st feature of x ′ 1 is unobserved. Therefore, 

δ′ (x 1 , x 2 ) = 

√ 

(5 − 3) 2 + 

1 

2 

= 2 . 5 , 

and δ′ (x 1 , x 3 ) = 

√ 

(5 − 6) 2 + 

1 

2 

= 1 . 5 . 

The estimates obtained by the different methods are illustrated 

in Fig. 1 . The reader should notice that while the points estimated 

using ZI, AI and 1NNI exist in the same 2-D Cartesian space to 

which X full is native, the point estimated by the PDM exists in an 

abstract space (likely distinct from the native 2-D space). However, 

for the sake of easy comparison, we illustrate all the estimates 

together by superimposing this abstract space on the native 2-D 

space so as to coincide at the points x 2 and x 3 . It is seen that the 

approach based on the PDM is better able to preserve the relation- 

ship between the points. Based on this knowledge, we deduce that 

the k NN classifier can easily be adapted to problems with missing 

features, using a PDM as the underlying dissimilarity. 
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