Accepted Manuscript

Title: Effect of film thickness on NO_2 gas sensing properties of sprayed orthorhombic nanocrystalline V_2O_5 thin films

Author: A.A. Mane A.V. Moholkar

PII:	S0169-4332(17)31115-7
DOI:	http://dx.doi.org/doi:10.1016/j.apsusc.2017.04.097
Reference:	APSUSC 35778
To appear in:	APSUSC
Received date:	1-3-2017
Revised date:	5-4-2017
Accepted date:	13-4-2017

Please cite this article as: A.A. Mane, A.V. Moholkar, Effect of film thickness on NO₂ gas sensing properties of sprayed orthorhombic nanocrystalline V_2O_5 thin films, *Applied Surface Science* (2017), http://dx.doi.org/10.1016/j.apsusc.2017.04.097

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Effect of film thickness on NO2 gas sensing properties of sprayed orthorhombic nanocrystalline V2O5 thin films

A. A. Mane^{a,b}, A. V. Moholkar^{*, a}

^a Thin Film Nanomaterials Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004, India
^b General Science and Humanities Department, Sant Gajanan Maharaj College of Engineering, Mahagaon, 416 503, India

* Corresponding author: avmoholkar@gmail.com

Abstract

The nanocrystalline V_2O_5 thin films with different thicknesses have been grown onto the glass substrates using chemical spray pyrolysis (CSP) deposition method. The XRD study shows that the films exhibit an orthorhombic crystal structure. The narrow scan X-ray photoelectron spectrum of V-2p core level doublet gives the binding energy difference of 7.3 eV, indicating that the V⁵⁺ oxidation state of vanadium. The FE-SEM micrographs show the formation of nanorods-like morphology. The AFM micrographs show the high surface area to volume ratio of nanocrystalline V₂O₅ thin films. The optical study gives the band gap energy values of 2.41 eV, 2.44 eV, 2.47 eV and 2.38 eV for V₂O₅ thin films deposited with the thicknesses of 423 nm, 559 nm, 694 nm and 730 nm, respectively. The V₂O₅ film of thickness 559 nm shows the NO₂ gas response of 41 % for 100 ppm concentration at operating temperature of 200 °C with response and recovery times of 20 s and 150 s, respectively. Further, it shows the rapid response and reproducibility towards 10 ppm NO₂ gas concentration at 200 °C. Finally, NO₂ gas sensing mechanism based on chemisorption process is discussed.

Keywords: Nanocrystalline V₂O₅ thin films; Chemical spray pyrolysis; XPS; NO₂ gas sensor

Download English Version:

https://daneshyari.com/en/article/5350471

Download Persian Version:

https://daneshyari.com/article/5350471

Daneshyari.com