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a  b  s  t  r  a  c  t

We  calculate  diffusion  coefficients  of  many  particles  jumping  over  a few types  of  crystal  lattices  of square
and hexagonal  symmetry.  Lattices  differ  by particle  jump  rates  modified  by  the  surface  reconstruction
or  presence  of  some  defects.  We  use  the  variational  approach  invented  for  the  analysis  of the  collective
diffusion  coefficients.  When  all adsorption  sites  have  the  same  energy  and  only the  site blocking  inter-
actions  are  present,  the  collective  diffusion  coefficient  is expressed  by the  same  formula  as  the  one  for
the single  particle  diffusion.  Our  calculations  show  in  several  examples  how  the arrangement  of different
jump  rates  along  the  lattice  affects  direction  and  character  of  the  particle  diffusion.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Diffusion plays an important role in various processes that occur
on crystal surfaces, for example crystal growth or formation of
nanostructures such as islands or chains. In each system particles
are adsorbed at sites of surface lattice of given geometry. Parti-
cles jump from site to site with rates depending on the potential
energy landscape, which in turn is related to the symmetry of con-
crete crystal surface. Regular lattices of adsorption sites of square
or hexagonal symmetry quite often change due to reconstruction
of the surface [1,2], impurities [3], defects [4], presence of adsorbed
atoms [5,6] or the strain inside the crystal [7,8]. Deformation of the
surfaces results in changes of the individual jump rates. It often
leads to the anisotropic diffusion [9,10]. In this work we study
diffusion of particles over some deformed lattices of square and
hexagonal symmetry as the (1 1 1) face of fcc metals and the (0 0 0 1)
face of hcp metals. The (1 1 0) face of bcc metals can be considered
as a distorted hexagonal lattice [11]. Due to reconstruction it can
also appear at the (1 0 0) face of Au or Pt [12,13]. Structures sim-
ilar to those studied here can emerge also by reconstruction of Si
(0 0 1) and Si (1 1 1) [14]. Transition rates of jumping particles at
reconstructed surfaces can be modified due to the change of the
energy of some sites [15], or by reduction or increase of the energy
barrier between two sites of the same energy [9]. Below only the
second case will be studied.
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2. Variational approach

Lattice gas systems are quite effective in modelling systems of
particles diffusing over lattices of different geometries. Diffusion of
many particles treated as one assembly is called collective diffusion
or chemical diffusion. It is studied in a system of a gas of particles
which reside at adsorption sites in a lattice where double occupancy
is forbidden. Time evolution of the whole system is defined by a
set of master rate equations for the probabilities P({c}, t) that a
microscopic microstate {c} of a lattice gas occurs at time t.

d

dt
P({c}, t) =

∑

{c′}
[W({c}, {c′})P({c′}, t) − W({c′}, {c})P({c}, t)]. (1)

{c} is understood as a set of variables specifying which particu-
lar sites in the lattice are occupied and which are not. W({c}, {c′})
is a transition probability per unit time (transition rate) that the
microstate {c′} changes into {c} due to a jump of a particle from an
occupied site to an unoccupied neighboring site.

We model dynamics over reconstructed surfaces by inhomo-
geneous lattice systems. In particular when all sites have the
same equilibrium energy, all changes are set to the jump barri-
ers between consecutive sites. As we will see below the collective
diffusion problem in such a case is given by the same equations
as these for the single-particle diffusion. First we  will derive these
equations in the same way as it was  done in Ref. [16] for homo-
geneous systems and then the same property of particle diffusion
will be seen in the variational approach we apply to the problem. If
a particle jumps between sites of the same energy, transition rates
in two  opposite directions are equal, we have W({c}, {c′}) = W({c′},
{c}). Now, let us sum both sides of the Eq. (1) over all the microstates
{c} under condition that one chosen site i is occupied. In such a way
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we get equation for a local density of particles �i(t) =
∑

{c}niP({c},
t) at site of position specified by vector i, where ni = 0, 1 is the site
occupation. Particles jump only between nearest neighboring sites,
hence the only nonzero elements of the transition matrix are W({c},
{c′}) = W(i, j) and describe rate of jump between site i and neigh-
boring site j. Now, the equation for time dependence of the mean
density is

d

dt
�i(t) =

∑

<j>

[Wj,iP(nj, 1 − ni, t) − Wi,jP(ni, 1 − nj, t)] (2)

where P(nj, 1 − ni, t) is the joint probability of finding a particle at
the site j and not finding one at the site i at the time t and the sum
is performed over all the neighboring sites of i. Because finding a
particle at a site and not finding one at the same site are mutually
exclusive events, the following identities hold:

P(nj, 1 − ni, t) + P(nj, ni, t) = �j(t)

P(ni, 1 − nj, t) + P(ni, nj, t) = �i(t)
(3)

Now, when we use the symmetry of transition rates Wi,j = Wj,i and
insert relations (3) into (2), the master equations (1) reduce to the
form:

d

dt
�i(t) =

∑

<ij>

Wi,j[�j(t) − �i(t)] (4)

This is the master equation for a local density of particles diffusing
on the lattice with the jump rates Wi,j. Variable �i is calculated for
many-particle system and means average occupation value at site i,
but for a single particle it can be replaced by a probability of finding
a particle at a site i. When we do such replacement, we  have master
equation for a single particle wandering over potential landscape
described by values of transition rates Wi,j. This identity proves that
single particle diffusion and collective particle diffusion are given
by the same equations as long as the equilibrium energy at each
lattice site is the same, what gives Wi,j = Wj,i symmetry. Below we
show that the variational approach invented for the many-particle
systems is a very effective method to describe this kind of diffusion
over two-dimensional lattices.

The variational approach to collective diffusion was  first pro-
posed in [17] and then applied in [18–23] for various systems. It
is based on the idea that the diffusion coefficients come from the
lowest eigenvalue of the rate matrix M̂ [24,25] which appears in
the Fourier-transformed master equation (1):

d

dt
P(k, t) = M̂(k) · P(k, t) (5)

Elements P{m}(k, t) of the vector P(k, t) are labelled by the con-
figuration {m} – the relative arrangement of the particles in the
microstate {c}. They are the Fourier transforms of P({c}, t). Ele-
ments of the transformed rate matrix M̂ depend on the jump rates
of a particle and are also labelled by the configuration {m}. In order
to approximate the lowest eigenvalue of the matrix we assume
some trial eigenvector and calculate the expression:

�var
D (�k) ≡ �̃ · [−M̂(�k)] · �

�̃ · �
≥  �D(�k) = −�kD̂�k (6)

�(�k) is a trial eigenvector in this variational approach. Rate matrix
M̂, eigenvalue � and eigenvector � operate in the Fourier space
of �k wavevectors. This approach is applied below to various sys-
tems with the same site energies, and different jump barriers from
site to site. The diffusing particles interact with each other only
through blocking interactions (multiple occupancy is forbidden). In

Fig. 1. Rates of jumps in the first lattice of square symmetry and lattice distorted
for  a concrete choice of jump rates.

such cases components �{m}of a trial eigenvector can be assumed
in the following shape:
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where position of the j-th particle in relation to the arbitrarily cho-
sen reference particle is given by the (xj, yj) vector and N is the total
number of the particles in the system. The values of the variational
parameters ıx

j
and ıy

j
(ıx

0 and ıy
0 for the reference particle) should

be chosen in such a way that �var
D has the smallest possible value.

It is done by differentiating �var
D with respect to those parameters.

D̂var can be also written as the ratio:

�kD̂var
�k = M(�k)

N(�k)
(8)

where M(�k) is the numerator of (6) and in our case

M(�k) =
N∑

<j,k>

Wj,k[kx(xk − xj) + ky(yk − yj) +kx(ıx
k

− ıx
j
) + ky(ıy

k
− ıy

j
)]

2
�(1 − �)

(9)

Wj,k is the probability of the particle jump from site j to k and �

is the system density. Denominator N(�k) now reduces to

N(�k) = N�(1 − �) (10)

and the diffusion coefficients will not depend on the system density
in agreement with the previously derived Eq. (4).

3. Results

We  study collective diffusion over a few lattices of square and
hexagonal symmetry with jump rates ordered in various ways
using the approach described above. Each choice of jump rate pat-
terns corresponds to different lattice reconstruction if we  assume
that value of jump rate is inversely proportional to the length of
links between sites. In general case both diffusion coefficients will
depend on all the transition rates in the system due to the coupling
of diffusion in the x and y directions. In addition to Dxx and Dyy

coefficients in some models we’ll get also Dxy, which is responsible
for rotation of the main axes of diffusion. Let us first analyse a lattice
where the rates of jumps both in the x-direction and the y-direction
alternate along their own directions (Fig. 1). At the right side of Fig. 1
links between sites are moved according to the specific choice of
jump rates, i.e. the smaller rate the longer the corresponding link
is. The following diffusion coefficients:

Dxx = 2WaWd

Wa + Wd
, Dyy = 2WbWc

Wb + Wc
(11)
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