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a b s t r a c t

In this paper, we reformulate a standard one-class SVM (support vector machine) and derive a least
squares version of the method, which we call LS (least squares) one-class SVM. The LS one-class SVM
extracts a hyperplane as an optimal description of training objects in a regularized least squares sense.
One can use the distance to the hyperplane as a proximity measure to determine which objects resemble
training objects better than others. This differs from the standard one-class SVMs that detect which
objects resemble training objects. We demonstrate the performance of the LS one-class SVM on relevance
ranking with positive examples, and also present the comparison with traditional methods including the
standard one-class SVM. The experimental results indicate the efficacy of the LS one-class SVM.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

One-class classification problem is to make a description of a set
of training objects and to detect which objects resemble this train-
ing set (Tax and Duin, 2004). Approach to this problem taken by
the standard one-class SVMs (support vector machines) is extract
the regions where a certain fraction of training objects may locate,
and classify an object according to whether the object resides in-
side the region or not. There are two standard algorithms in the lit-
erature (Müller et al., 2001; Schölkopf et al., 2001; Tax and Duin,
1999, 2004), which are equivalent for a certain type of kernel func-
tions such as Gaussian kernel function (Müller et al., 2001). One of
the standard one-class SVMs is estimate the sphere of minimum
volume which encloses a given fraction of training objects (Tax
and Duin, 1999, 2004). The other is extract a hyperplane in a kernel
feature space such that a given fraction of training objects may re-
side beyond the hyperplane, while at the same time the hyper-
plane has maximal distance to the origin (Schölkopf et al., 2001).
These standard one-class SVMs have been successfully applied
for novelty detection (Deng and Xu, 2007; Ma and Perkins, 2003;
Tax and Duin, 2004).

In this paper, we reformulate the standard one-class SVM in
(Schölkopf et al., 2001) and derive a least squares version of the
method, which is called the LS (least squares) one-class SVM. The
LS one-class SVM uses a quadratic loss function and equality con-
straints, and extracts a hyperplane with respect to which the dis-
tances from training objects are minimized in a regularized least
squares sense. This reformulation is very similar to the derivation

of the LS SVM from the standard the SVM classifier (Suykens and
Vandewalle, 1999; Suykens et al., 2002), in that both LS approaches
use the quadratic loss functions. Hence, the proposed LS one-class
SVM also loses the sparseness property of the standard one-class
SVMs. One may overcome the loss of the sparseness by pruning
training samples (Kruif and Vries, 2003; Kuh and De Wilde, 2007).

The hyperplane obtained from the LS one-class SVM is not the
boundary of regions as in the standard one-class SVMs. Instead,
it represents a hyperplane which most of training objects may lie
close to. One can use the distance to the hyperplane as a proximity
measure to determine which objects resemble training objects bet-
ter than others. In this paper, we apply the LS one-class SVM for
relevance ranking with positive examples. In the ranking problem,
one should rank all documents according to the proximity to the
set of training documents. This is important in modern information
retrieval problems (Chakrabarti et al., 1999; Chen et al., 2001;
Manevitz and Yousef, 2001; Setia et al., 2005).

There have been several attempts to use the distance from the
center of sphere obtained from the standard one-class SVM (Tax
and Duin, 2004) as a proximity measure to the training set (Chen
et al., 2001; Manevitz and Yousef, 2001). Despite of the usefulness
of these approaches, the distance to the center of sphere does not
necessarily reflect the proximity to the training set. For instance, an
object closer to the center might be farther from training objects.
This is because in the standard one-class SVM, the training objects
inside the regions may not contribute to the construction of the re-
gions. On the other hand, the LS one-class SVM seeks to minimize
the sum of distances from all training objects to the hyperplane in
a regularized least squares fashion and thus most of training ob-
jects may lie close to the hyperplane. Therefore, the proximity to
such hyperplane can better reflect the proximity to the training set.
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There are several research works (Suykens et al., 2003; Roth,
2004) related to the proposed LS one-class SVM. Suykens et al.
(2003) showed that the kernel PCA (principal component analysis)
can be interpreted as a one-class modeling problem with zero tar-
get value. Roth has presented a one-class kernel Fisher discrimi-
nant which is a kernel ridge regression (Saunders et al., 1998)
with a single target value with assumption of Gaussian distribution
of data samples. The LS one-class SVM can be also regarded as a
kind of kernel ridge regression with a single target value. Unlike
Roth’s approach, the proposed LS one-class SVM does not make
any assumption on the distribution of data samples. Thus the LS
one-class SVM can provide more flexibility on the handling of
one-class problems.

In Section 2, we briefly introduce the standard one-class SVMs,
and present the proposed LS one-class SVM. In Section 3, we dis-
cuss the differences between the LS and the standard one-class
SVMs. Section 4 presents experimental results with several collec-
tions of Web pages, comparing the standard one-class SVMs. We
make conclusions in Section 5.

2. Least squares one-class support vector machines

In this section, we briefly introduce the standard one-class
SVMs and then present the LS one-class SVM. First, we define a
mapping function to be used in the following description. Suppose
that we are given an input data set S containing n points {xj:
j = 1, . . . ,n}, where S # X and X # Rd. Then, we define a map /:
X ? F to be the mapping of X into feature space F such that a dot
product in feature space can be computed by a kernel function,
i.e. /(xi) � /(xj) = K(xi, xj).

2.1. Standard one-class support vector machines

The standard one-class SVM (Schölkopf et al., 2001) can be sta-
ted as the following objective function to be minimized:

1
2
kwk2 � qþ C

X
j

nj; ð1Þ

subject to w � /(xj) P q � nj and nj P 0. Here, w � /(x) = q represents
a hyperplane in feature space, k � k denotes Euclidean norm, and nj

slack variables. The parameter C is predefined and controls the frac-
tion of outliers (Müller et al., 2001; Schölkopf et al., 2001).

Eq. (1) seeks to extract a hyperplane which has the maximal
distance q/kwk2 from the origin and beyond which most of training
examples may reside. The hyperplane can be obtained by solving
the following dual objective function to be maximized:

�
X

i;j

aiajKðxi; xjÞ; ð2Þ

subject to 0 6 aj 6 C and
P

jaj = 1, where aj denotes Lagrangian
multiplier. The obtained hyperplane f(x) can be written as

f ðxÞ ¼
X

i

aiKðxi; xÞ � q: ð3Þ

One can determine the values of aj using the traditional quadratic
programming with a linear constraint. The bias term q can be also
obtained from f(xs) = 0, where xs denotes one of the support vectors
obtained. The decision function g(x) for one-class classification is
simply to take the sign of f(x) as follows.

gðxÞ ¼ sgnðf ðxÞÞ ¼ sgn
X

i

aiKðx; xiÞ � q

 !
: ð4Þ

Another standard one-class SVM (Vapnik, 1998; Tax and Duin,
1999, 2004), which is also called support vector data description,

can be formulated as the following objective function to be
minimized.

R2 þ C
X

j

nj; ð5Þ

subject to k/(xj) � ak2
6 R2 + nj and nj P 0 for all xj, where vector a

denotes the center of the sphere.
Eq. (5) seeks to extract the sphere of the minimum radius R

enclosing the fraction of training objects. One can obtain the
sphere by solving the following dual objective function to be
maximized.X

j

ajKðxj; xjÞ �
X

i;j

aiajKðxi; xjÞ; ð6Þ

with 0 6 aj 6 C and
P

jaj = 1, where aj denotes Lagrangian multi-
plier. Note that (6) is equivalent to (2) for the kernel functions sat-
isfying with K(xj,xj) = 1. The obtained center of the sphere can be
written as follows:

a ¼
X

j

aj/ðxjÞ: ð7Þ

The values of aj can be determined using the quadratic program-
ming, and the value of R2 can be computed from k/(xs) � ak2 = R2,
where xs denotes one of the support vectors. The decision function
for one-class classification simply becomes

gðxÞ ¼ sgnðR2 � k/ðxÞ � ak2Þ: ð8Þ

2.2. Least squares one-class support vector machine

To derive a LS (least squares) version of the standard one-class
SVM, we reformulate the one-class SVM described in (1) by using a
quadratic error function and the equality conditions. The corre-
sponding LS one-class SVM can be written as the following objec-
tive function to be minimized:

1
2
kwk2 � qþ 1

2
C
X

j

n2
j ; ð9Þ

subject to w � /(xj) = q � nj. Now, the conditions for the slack vari-
ables, nj P 0 in (1) no longer hold. Instead, the variable nj represents
an error caused by a training object xj with respect to the hyper-
plane, i.e. nj = q �w � /(xj).

The LS one-class SVM described in (9) seeks to extract a hyper-
plane which has the maximal distance q/kwk2 from the origin, and
with respect to which the sum of the squares of errors, n2

j are min-
imized. One can solve the problem in (9) as follows. By introducing
Lagrangian multipliers aj, the corresponding objective function can
be written as the following.

L ¼ kwk
2

2
� qþ C

2

X
j

n2
j �

X
j

ajð/ðxÞ �wþ nj � qÞ: ð10Þ

Setting to zero the first derivatives of (10) with respect to w, nj, q,
and aj leads to the following relations:

oL
ow
¼ 0! w ¼

X
j

aj/ðxjÞ;

oL
onj
¼ 0! nj ¼ aj=C;

oL
oq
¼ 0!

X
j¼1

aj ¼ 1;

oL
oaj
¼ 0! /ðxjÞ �wþ nj � q ¼ 0: ð11Þ

Eliminating w and nj through substitution in (11) yields
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