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a b s t r a c t 

In more challenging problems the input to a clustering problem is not raw data objects, but rather para- 

metric statistical summaries of the data objects. For example, time series of different lengths may be 

clustered on the basis of estimated parameters from autoregression models. Such summary procedures 

usually provide estimates of uncertainty for parameters, and ignoring this source of uncertainty affects 

the recovery of the true clusters. This paper is concerned with the incorporation of this source of uncer- 

tainty in the clustering procedure. A new dissimilarity measure is developed based on geometric overlap 

of confidence ellipsoids implied by the uncertainty estimates. In extensive simulation studies and a syn- 

thetic time series benchmark dataset, this new measure is shown to yield improved performance over 

standard approaches. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Cluster analysis is a well-known unsupervised technique, which 

aims at assigning data objects into homogeneous groups [4] . 

Groups are formed based on a predefined dissimilarity measure 

between objects. Hence, the performance of clustering algorithms 

is highly affected by the dissimilarity measure used in the cluster- 

ing process. 

Two important properties of any data set are often ignored in 

the conventional computation of dissimilarities between objects 

using standard measures such as Euclidean distance, Manhattan 

distance and many others: the first property is error information 

associated with each variable, and the second is the dependence 

between these variables. Discarding such properties is more likely 

to result in imprecise cluster assignments. 

We present a dissimilarity measure that considers error infor- 

mation associated with n data objects in a p -dimensional space 

{ Y i } n i =1 
= { ( y 1 , . . . , y p ) i T } , where each element { y j } p j=1 

is a vector- 

valued quantity which could be one value or a time series. Note 

that the proposed measure can thus handle different length time 

series objects. In this paper, data objects { Y i } n i =1 
are represented 

by vectors of model coefficients ˆ βi for i = 1 , . . . , n, which are 

estimated from some statistical models. Such statistical models 
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estimate the covariance matrix �( ̂  βi ) for i = 1 , . . . , n, which de- 

fines error information or the uncertainties of model coefficients; 

these terms will be used interchangeably throughout this paper. 

We consider �( ̂  βi ) in the computation of dissimilarities between 

model coefficients to obtain consistent cluster results. 

The importance of incorporating the uncertainty associated 

with point estimates in dissimilarity measures is illustrated by 

the example in Fig. 1 . Coefficient estimates in Fig. 1 are sampled 

from two-dimensional Gaussian distributions with small variances. 

These coefficients are clustered using the well-known k -medoid 

clustering methods [4,7] with standard Euclidean distance. As can 

be seen, perfect cluster assignments are obtained using Euclidean 

distance (left plot in Fig. 1 ). However, this standard dissimilarity 

measure frequently fails to identify the correct clusters when data 

points are impaired by high amount of variability as shown in the 

right plot of Fig. 1 . Standardising variables often handles problems 

of location and scale, however the correlations between variables 

are discarded. Cluster analysis with Euclidean distance might be 

superior only in the absence of correlation between variables. 

Although the consideration of the implicit uncertainty in clus- 

ter analysis is an active research topic, only a few studies have 

incorporated the uncertainty explicitly. An early approach to this 

problem was developed by Chaudhuri and Bhowmik [3] , however 

its applicability is limited to uniformly distributed error. Another 

paper by Kumar and Patel [8] in which they consider clustering 

model coefficients with uncertainty. The dissimilarity measure 

suggested in [8] is the Mahalanobis distance, which incorpo- 

rates uncertainty explained by the covariance matrix between 

coefficient estimates. The covariance matrix in the Mahalanobis 
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Fig. 1. Data points in both plots are random sample drawn from bivariate Gaussian distributions with means (β1 , γ1 ) 
T = (−4 , 0 . 5) T , (β2 , γ2 ) 

T = (1 , 2) T and (β3 , γ3 ) 
T = 

(5 , 0 . 5) T for clusters C 1 , C 2 and C 3 , whereas the variances are assumed to be zero in the left plot, and have some positive values in the right plot. Each boundary indicates 

an iso-density contour of the generating distribution of the predicted cluster. Euclidean distance was used in the clustering process. 

distance assigns higher weights to distance between estimates if 

the orientations of their distributions are different [11] , although 

the degree of similarity between estimates with different orienta- 

tions of distributions might be higher than estimates in the same 

orientations. In response to these shortcomings, we propose a 

dissimilarity measure that is defined based on geometric overlaps 

between the distributions of coefficient estimates regardless of 

the orientations. Another advantage of the proposed dissimilarity 

measure is the ability to achieve good clustering performance 

without making any assumption on the error distribution as 

the measure is defined on confidence regions however they are 

constructed, whereas the Mahalanobis distance is only optimal for 

clustering data from Gaussian distributions. 

Our dissimilarity measure considers the geometrical overlap of 

uncertainties associated with coefficient estimates which define a 

(1 − α)% confidence region. This confidence region is represented 

by an ellipsoid with parameters μ and �; they represent the cen- 

tre of the ellipsoid defined by the point estimates, and its orien- 

tation and size which are defined by the covariance matrix be- 

tween estimates. In the computation of the proposed dissimilarity 

measure, we consider part of the joint distribution that is deter- 

mined by the significance level α. Optimal clustering performance 

is expected before the confidence region reaches the 100% con- 

fidence level. In principle, the free parameter α could be tuned 

by computation procedures with a proxy measure for clustering 

performance. 

The advantage of the ellipsoid dissimilarity measure is the abil- 

ity to identify clusters from all possible values of an estimate 

rather than producing results that are restricted to single values 

obtained from point estimates. Therefore, outcomes of clustering 

using the ellipsoid confidence regions are expected to be more sta- 

ble than the clustering using conventional dissimilarity measures. 

We test the performance of the proposed ellipsoid dissimilarity 

measure on simulated data from bivariate Gaussian distributions 

and on coefficient estimates from vector autoregression models. 

This paper is structured as follows: Sections 2 and 3 describe in 

detail the proposed ellipsoid based dissimilarity measure. Section 4 

includes the outcomes of the simulation studies. In Section 5 , we 

test the performance of the proposed measure on a benchmark 

dataset of control charts. Finally we present a summary including 

directions for future work, in Section 6 . 

2. Geometrical representation for uncertainty 

Assume a vector of coefficients ˆ β ∈ R 

p is estimated by fitting 

a statistical model to some data. The uncertainty associated with 

the estimate ˆ β is represented by the estimated covariance matrix ̂ � ∈ R 

p×p , where ̂ � is a positive definite matrix. 

2.1. Confidence interval ellipsoids 

In the proposed approach of incorporating uncertainty in the 

dissimilarity measure, the uncertainty of coefficient estimates is 

geometrically represented by an ellipsoid E( μ, ̂  �) defined by, 

E( μ, ̂  �) : { (x − μ) T (c ̂  �) 
−1 

(x − μ) ≤ 1 } , (1) 

where the centre of the ellipsoid is the point estimate μ = 

ˆ β un- 

der the model and the size and orientation are defined by the es- 

timated covariance matrix ̂ � . Computations of principal axes and 

radii of ellipsoids are involved in the computation of the dissimi- 

larity measure, in which principal axes are defined by the eigen- 

vectors of c ̂  � denoted by { v i } p i =1 
and radii are obtained from the 

corresponding eigenvalues { λi } p i =1 
by { 1 √ 

λi 

} p 
i =1 

[6] . 

That is, ellipsoids are constructed to represent confidence 

regions for simultaneous inference about the coefficients ˆ β = 

(b 1 , . . . , b p ) . These confidence regions are controlled by the scalar 

multiplier c = t τ, 1 −α/ 2 , that is the quantile of t-distribution where 

τ = n − p − 1 . For example, when n > 30, p = 2 and c = 1 , the 

representation of an ellipsoid in two-dimension defines an ellipse 

which corresponds to a 0.84 confidence region for the inference on 

( b 1 , b 2 ), as shown in Fig. 2 . Note that the true values of ( b 1 , b 2 ) can 

be anywhere inside the ellipse. 

Typically, the projections of ellipsoids on the coordinate axes 

define the confidence intervals for the individual coefficient by, 

b j ± t τ, 1 −α/ 2 S b j , j = 1 , . . . , p. (2) 

The confidence interval level in Eq. (2) corresponds to (1 − α)% 

quantile of t-distribution, where S b j is an estimate of σb j 
the 

square root of the uncertainty associated with b j in the diagonal 

of ̂ � . 

However, the previous multiplier c defines the individual 

(1 − α)% confidence intervals for ˆ β but the joint confidence level 

is reduced to (1 − pα)% . In order to increase the confidence level 

for joint inference, Bonferroni confidence intervals [12] can be 

constructed. Bonferroni’s adjustment to the significance level for 

the inference about the individual parameter is 1 − α/ (2 p) to 

obtain a (1 − α)% conservative confidence region for the joint 

inference on 

ˆ β = (b 1 , . . . , b p ) . Thus, we only need to replace the 

multiplier t τ, 1 −α/ 2 by t τ, 1 −α/ (2 p) in Eq. (1) to achieve the required 

level of confidence. Notice that the volume of the ellipsoid with 
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