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a b s t r a c t 

Kernel principal component analysis (KPCA) is a popular extension of the classical PCA that allows non- 

linear subspace projection. It is based on eigen-decomposition of the kernel matrix. The main crux of 

KPCA lies in the computational cost of the eigen-decomposition step. In this paper, we show that this 

decomposition can also be done by analyzing the covariance matrix obtained from the empirical kernel 

map . We can further reduce the computational cost by combining the empirical kernel map with random 

projection. Experimental results show that the proposed method accurately approximates the eigenval- 

ues/eigenvectors of the original kernel matrix. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Kernel principal component analysis (KPCA) is a popular exten- 

sion of the classical PCA that allows non-linear subspace projec- 

tion. The main crux of KPCA lies in the computational cost of the 

eigen-decomposition step of the kernel matrix. For a given set of n 

points, the size of the kernel matrix is O(n 2 ) and the complexity 

of its eigen-decomposition is O(n 3 ) . As the size of the dataset is 

becoming larger and larger nowadays, direct application of KPCA is 

becoming impractical. 

To reduce the complexity, Kim et al. [10] proposed a kernel- 

ized version of the classical generalized Hebbian algorithm [16,20] . 

This adaptive algorithm allows computing kernel principal sub- 

space without eigen-decomposing the kernel matrix. However, to 

use this method, one has to choose the dimension of the kernel 

subspace beforehand which could be impractical in some cases. 

Smola and Schökopf [23] proposed a simpler method that con- 

structs the kernel subspace by incrementally selecting new basis 

vector from the dataset. The dimension of the kernel subspace is 

then determined as function of the kernel matrix approximation 

using the selected basis vectors. Similar approach was considered 

by Franc and Hlavac [7] but with selection criterion that measures 

the reconstruction error of vectors in kernel space instead. The 

main computational cost of this approach lies in the evaluation of 

the new basis vector. 

To further reduce the computational cost, some authors, e.g. 

[12,14] , proposed to group the data first then use the pre-image of 
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the mean of each cluster to construct the kernel matrix. The pre- 

image problem refers to finding the point in the input space given 

its image by the kernel mapping function. As the kernel mapping 

function is generally unknown, this is a non-trivial problem. In 

fact, in some kernel space the pre-image may not even exist [15] . 

Hence, these methods contain two sources of imprecision namely 

the use of cluster’s representation and the pre-image reconstruc- 

tion. Chin and Suter [4] also employed the pre-image reconstruc- 

tion in their incremental KPCA in order to maintain the complexity 

of the update procedure. 

Instead of synthesizing data using pre-image reconstruction, 

Williams and Seeger [27] showed how to extend the eigen- 

structure (e.g. eigenvalues/eigenvectors) computed from a small 

subset of examples to cover the whole dataset using the Nyström 

approximation formula. This approach has received large attention 

recently. Indeed, this method is simple yet provides good results 

in practice [6,18] . Several authors have extended this method by 

investigating different subset selection strategies, e.g. [5,13,25] . 

Another interesting approach is proposed by Achlioptas et al. 

[2] . In this work, the given kernel κ is replaced by a “randomized 

kernel” which behaves like κ in expectation. The authors showed 

that one can recover the eigenvectors of the original kernel matrix 

using the decomposition of the randomized kernel matrix. Achliop- 

tas et al. constructed the randomized kernel by randomly omitting 

entries of the original kernel matrix leading to a sparser matrix 

that is easier to be eigen-decomposed. We can also construct ran- 

domized kernel using other methods such as the tensor sketch for 

polynomial kernel [17] or random Fourier features for RBF kernel 

[19] . This approach is, nonetheless, not generic; it depends on the 

type of the given kernel. 

This work proposes a generic algorithm to approximate the 

eigen-decomposition of any kernel matrix. The proposed method 
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is based on two ideas. Firstly, the eigen-decomposition of a large 

covariance matrix can be performed in a lower dimensional space 

if we can preserve the dot product between vectors in this dataset. 

This dot product preservation can be done, for example using the 

random projection method. Secondly, the eigen-structure of the 

kernel matrix is related to that of the covariance matrix constructed 

from the empirical kernel map (EKM) [21] . The combination of these 

two ideas gives a simple yet accurate method for approximate the 

eigen-structure of the kernel matrix. 

In the following, Section 2 first discusses eigen-structure 

approximation using dot product preserving function. 

Section 3 presents the link between the empirical kernel map 

and the eigen-structure of the kernel matrix. Then Section 4 and 

5 present the experiments and the conclusion, respectively. 

2. Dot product and eigen-structure approximation 

The structure of the principal subspace depends on the dot 

product between vectors in the dataset. If we can transform data 

into a lower dimensional subspace while preserving the dot prod- 

uct, then we may work in this lower dimensional subspace in- 

stead of the original one. This can largely reduce the compu- 

tational cost of the eigen-decomposition procedure. Next section 

presents formal algorithm and justification of this method. Then 

Section 2.2 discusses the choice of dot preserving function. 

2.1. Basic idea 

Consider a set of multi-dimensional vectors x 1 , . . . , x n , x t ∈ 

R 

d . We shall assume that this dataset has zero mean. Let X = 

[ x 1 ; . . . ; x n ] be the data matrix of size d × n . The covariance ma- 

trix is given by XX 

T and the dot matrix is X 

T X . It is straightforward 

proving that if v is an eigenvector of XX 

T , then X T v is an eigen- 

vector of X 

T X . In an analogous manner, if u is an eigenvector of 

X 

T X , then Xu is an eigenvector of XX 

T . Noted that in both cases, the 

eigenvalue remain unchanged. 

Suppose that each point x t can be transformed into another 

vector z t using a dot product preserving function f such that, z i = 

f (x i ) and ∀ i , j , 1 ≤ i , j ≤ n 

x T i x j = z T i z j + ε i j , (1) 

where ε ij is the error in preserving the dot product. Therefore, we 

have 

X 

T X = Z T Z + E (2) 

with Z the data matrix of the transformed vectors and E the error 

matrix. From the perturbation theory, we know that the difference 

between the eigenvalue of X 

T X and Z T Z can be upper-bounded by 

the size of E . Let λ1 ≥ λ2 ≥ · · · ≥ λn be eigenvalues of X 

T X and 

˜ λ1 ≥
· · · ≥ ˜ λn be eigenvalues of Z T Z , then we have 

| λi − ˜ λi | ≤ ‖ E‖ 2 ≤ n max 
i, j 

ε i j . (3) 

Thus, if the dot product error is small enough, the approximate 

eigenvalues should be close to the correct ones. 

Eigenvectors analysis is more complicated. Indeed, if λ is a 

repeated eigenvalue of X 

T X , then there are infinite number of 

possible eigenvector bases for the associated invariant subspace 

[8] . Hence, to correctly identify an eigenvector, the correspond- 

ing eigenvalue must be sufficiently distinct from other eigenvalues. 

In this work, we consider a softer condition that large and small 

eigenvalues are separable: 

min 

i =1 , ... ,m, j= m +1 , ... ,n 
| λi − λ j | = � > 0 . (4) 

Then, a result from [24] says that if ‖ E ‖ 2 ≤ �/5, then the dif- 

ference between the m -dimensional principal subspaces obtained 

from X 

T X and from Z T Z can be upper bounded as follows: 

dist ( PCA (X 

T X ) , PCA (Z T Z)) ≤ 4 

�
‖ F 21 ‖ 2 , (5) 

where F 21 is an (n − m ) × m matrix given by 

V 

T EV = 

[
F 11 F T 21 

F 21 F 22 

]
(6) 

with V = [ v 1 , . . . , v n ] the matrix of all eigenvectors of X 

T X and the 

“dist” function in Eq. (5) is the norm of the difference between 

then eigenvectors of the two subspaces. In summary, if the eigen- 

values separation ( �) is large and if we have small dot product 

preserving error (max i , j ε ij ≤ �/5 n ), then the obtained principal 

space should be closed to the real one. 

From the above idea, an eigenvector of X 

T X can be approxi- 

mated by Z T v where v is an eigenvector of Z T Z . Then we can con- 

vert this eigenvector into that of XX 

T by left-multiplying it with X . 

This idea is summarized in Algorithm 1 . 

Algorithm 1 Approximate eigen-decomposition of the covariance 

matrix of the input dataset with a dot product preserving function 

f such as f RP or f (h,s ) 
CS 

. 

1: procedure Approx–Eig–Cov ( x 1 , . . . , x n , f ) 

2: Let z t = f (x t ) , t = 1 , . . . , n be the image of x 1 , . . . , x n by f and 

Z = [ z 1 , . . . , z n ] be the data matrix having z t as t th column. 

3: Compute the covariance matrix Z Z T 

4: Let (λi , v i ) , i = 1 , . . . , m be m largest eigenvalues and the 

corresponding eigenvectors of Z Z T . 

5: Compute ( ̂ λi , ̂  v i ) approximate eigenvalues/eigenvectors of 

X T X with 

ˆ λi = λi and 

ˆ v i = Z T v i . 
6: Compute ˆ u i approximate eigenvectors of X X T with ˆ u i = X ̂  v i . 

Noted that the corresponding eigenvalue of ˆ u i is ˆ λi . 

7: return ( ̂ λi , ̂  u i ) , i = 1 , . . . , m 

8: end procedure 

2.2. Dot product preserving function 

Algorithm 1 relies on a dot product preserving function f . This 

function should be easy to construct. In this work, we consider 

two particular functions that involve randomization but allow pre- 

serving dot product with high probability . These two functions are 

the random projection (RP) ( Section 2.2.1 ) and the count sketch (CS) 

( Section 2.2.2 ). 

2.2.1. Random projection 

Random projection owes its popularity to the classical result 

called the Johnson–Lindenstrauss lemma [9] . This lemma asserts 

that we can embed d -dimensional data into a lower subspace of 

dimension q , that is independent of d and that preserves the Eu- 

clidean distance up to a multiplicative factor between 1 − ε and 

1 + ε. Known constructions of such embedding involve random 

projections [1] , e.g. the Gaussian random projection defined as fol- 

lows: 

f RP (x ) = 

1 √ 

q 
Ax (7) 

where A is a q × d matrix whose elements are sampled from Gaus- 

sian distribution with zero mean and unit variance. 

It can be proved that with probability at least 1 − δ if q = 

O( 1 
ε 2 

log 1 
δ
) then 

1 

Pr 
{| x T y − f RP (x ) T f RP (y ) | ≥ ε 

}
≤ 4 exp 

(
− (ε 2 − ε 3 ) q 

4 

)
(8) 

1 In general, we consider δ = 

1 
n 

for dataset of n points. 
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