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When the film thickness approaches the electron mean free path (MFP), the relative contributions of
surface/grain boundary scattering to the resistivity remain indefinitive. In this work, series of NiFe films
sandwiched by AIN barriers were employed to study the transport properties. Surface scattering is found
to provide the strongest contribution to the resistivity increase for very thin films (dyjre <10 nm). With
the increase of the film thickness, the effect of the grain boundary scattering gradually increases while
the surface scattering decreases. When the thickness of the film is over 30 nm, the former becomes

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the burgeoning anisotropic magnetoresis-
tance (AMR) materials based on novel structures [1,2] or new
physical mechanism (such as tunnel AMR, ballistic AMR, and
antiferromagnetic AMR) [3-5] have attracted extensive attention.
In particular, NigiFe1g9 (permalloy) film is the most adopted AMR
material [1,2,6-10] in basic spintronic research due to its good soft
magnetic properties and larger AMR value. For the permalloy films,
when the film thickness is reduced to the nanometer scale, espe-
cially approaching the mean free path (MFP) of an electron in NiFe
(<10nm) [11], resistivity markedly increases, causing a significant
decrease of MR value. The phenomenon that the film resistivity
increases with decreasing film thickness is called the classical
resistivity size effect, which was initially found by Thomson in
1901 [12], and later was first described by the Fuchs-Sondheimer
(FS) theory [13,14]. Then, Mayadas and Shatzkes (MS) [15] treats
grain boundary scattering as the primary mechanism for resistivity
increasing with decreasing the film thickness. In recent years, there
is extensive investigation attempting to reveal the relative contri-
butions of surface and grain boundary scattering to the electrons
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transport. For example, Zhang et al. [16] and Sun et al. [ 17] studied
nanoscale copper films and found that grain boundary scattering
plays a crucial role in determining the resistivity. Wu et al. [18]
found that the influence of surface scattering is less than previ-
ously speculated, while grain boundary scattering is dominant. In
contrast, according to a study by Henriquez et al. [ 19], the electron
surface scattering is the dominant electron scattering mechanism
for nanoscale Au layers. Up to now, there has been much debate
regarding the relative contributions of surface scattering and grain
boundary scattering to the classical resistivity size effect. The
current research on the resistivity size effect is mainly focused on
the non-magnetic metals which do not involve electron spin, but
there are few reports on the study of the spin-dependent resistivity
size effect. Therefore, a better understanding of this issue will
extend previous studies. Moreover, during the design process of
spintronic materials and devices, this study also provides new
insight into manipulating the spin-polarized electrons transport
for optimizing device performances through controlling thickness
of magnetic layers.

2. Experimental

In this study, Ta(5nm)/AIN(4 nm)/NiFe(d nm)/AIN(3 nm)/Ta
(5nm) multilayered films, with NiFe thickness d ranging from
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Fig. 1. MR-H curves for the Ta(5 nm)/AIN(4 nm)/NiFe(d nm)/AIN(3 nm)/Ta(5 nm) films [dyire = 5, 30, 80] before and after annealing at 400 °C.
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Fig. 3. (a) Ap and (b) p vs. the NiFe film thickness for the Ta(5nm)/AIN(4 nm)/
NiFe(d nm)/AIN(3 nm)/Ta(5 nm) before and after annealing. The dash dot lines are

guide for the eye.

Fig.4. (a) XRD patterns and (b) average grain size for the films Ta(5 nm)/AIN(4 nm)/
NiFe(d nm)/AIN(3 nm)/Ta(5nm) with different NiFe thickness before and after
annealing. The grain size is determined from XRD studies applying the Scherrer
formula to the half-width of the (11 1) reflex.
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