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The feature subset selection problem has a growing importance in many machine learning applications
where the amount of variables is very high. There is a great number of algorithms that can approach this
problem in supervised databases but, when examples from one or more classes are not available, super-
vised feature subset selection algorithms cannot be directly applied. One of these algorithms is the cor-
relation based filter selection (CFS). In this work we propose an adaptation of this algorithm that can be
applied when only positive and unlabelled examples are available. As far as we know, this is the first time
the feature subset selection problem is studied in the positive unlabelled learning context. We have
tested this adaptation on synthetic datasets obtained by sampling Bayesian network models where we
know which variables are (in)dependent of the class. We have also tested our adaptations on real-life dat-
abases where the absence of negative examples has been simulated. The results show that, having
enough positive examples, it is possible to obtain good solutions to the feature subset selection problem
when only positive and unlabelled instances are available.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Synthesising the knowledge contained in databases into classifi-
cation models is a very powerful tool that can be used in a wide range
of applications, from genome analysis to spam filtering. In principle,
one can be tempted to think that the more information we have, the
better the model we can induce, but this is only partially true.

In supervised databases we have instances characterised by
some features or predicting variables and a category or class vari-
able (Bishop, 2006, Duda et al., 2001). Given a new instance, a clas-
sification model tries to predict its class based on the value of the
features, but not all the features are equally useful for the classifi-
cation purpose. Non informative (poorly correlated with the class)
and redundant variables (highly correlated with other features)
can be harmful for some model induction algorithms. Irrelevant
and redundant features are not only harmful, but they also lead
to models that are too complex and increase the computational
time required to obtain the classifier. Therefore, producing a small
set of predictive and non-redundant features is becoming a very
important step in many machine learning applications.

Two main ways to reduce of the dimensionality of classification
problems have been proposed in the literature: feature extraction
(Liu and Motoda, 1998) and feature subset selection (FSS) (Liu
and Motoda, 2008, Guyon and Elisseeff, 2003). The former consists
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of combining the features in the database to obtain new, better fea-
tures. The main problem with this approach is that the meaning of
the original variables is lost in the newly constructed features. The
latter consists of selecting the best subset of features for the clas-
sification purpose. In this work we will focus on the FSS approach.

There are three main approaches to the FSS problem (Guyon
and Elisseeff, 2003, Saeys et al., 2007), namely embedded, wrapper
and filter methods. Some classifier induction algorithms, such as
the C4.5 algorithm (Quinlan, 1993), do not use all the available
variables. This sort of FSS is known in the literature as embedded
ESS. The wrapper approaches (Kohavi and John, 1997) try to iden-
tify the subset of variables that, given a classification paradigm
and a dataset, provides with the best classification function. The
process consists of a search in the feature subset space guided by
a performance measure (typically the accuracy, though other mea-
sures can be used). Each subset is evaluated by testing the perfor-
mance of the chosen paradigm in the dataset, using only the
variables in the subset at evaluation. The estimation of the perfor-
mance of the classifiers requires a validation scheme, such as cross
validation (Efron, 1983) or bootstrap estimation (Efron and Tibsh-
irani, 1993). As a result, the evaluation of each subset involves the
training and testing of several classification functions, increasing
the computational time required for the FSS process. Besides, the
search for the best subset is an NP-hard problem (Amaldi and
Kann, 1998) and, thus, an exhaustive search quickly becomes com-
putationally unfeasible and search heuristics have to be used to ob-
tain a good feature subset in a reasonable time (Inza et al., 2000).
This is the main drawback of these methods. Another characteristic
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of the wrapper methods (that can be good or bad, depending on the
point of view) is that the subset produced by the algorithm de-
pends on the classification paradigm considered in the search. This
means that the selection obtained with a classification paradigm
cannot be applied to other classification paradigms, as the solution
is tuned up for that particular paradigm.

The filter approaches search for the best subset of variables,
independently of the classification paradigm, considering the rela-
tionship between the predicting variables and the class and (some-
times) the relationship among the predicting variables. One of the
most simple approaches consists of ranking the variables according
to their usefulness and then selecting only those variables on the
top of the ranking. The usefulness of a feature is measured univari-
ately by means of different metrics. For instance, information the-
ory related metrics (Cover and Thomas, 2006) evaluate the
usefulness of the feature by measuring the reduction on the uncer-
tainty of the class variable when the value of the feature at evalu-
ation is known (Ben-Bassat, 1982). Once the features are ranked, a
threshold must be set to obtain the final subset. The ranking meth-
ods are only concerned with the relevancy of the features consid-
ered and, thus, they do not filter out redundant variables.

The problem of searching for relevant and non-redundant fea-
tures can be solved by a multivariate filter method known as cor-
relation based filter selection (CFS) (Hall and Smith, 1997). This
method searches for the best feature subset guided by a metric that
measures both the correlation between each variable and the class
and the correlation among the selected variables. The aim is to ob-
tain a subset of relevant variables (i.e., features strongly correlated
with the class) without redundancies (i.e., with a small correlation
between them).

Filter methods are much faster than wrapper approaches and
they are independent of the classification paradigm. Therefore,
once we have a subset of features, this subset can be used in the
training of any sort of model.

All the filter FSS methods mentioned above require examples
from all the classes in order to measure the correlation between
each feature and the class, but in some real situations, getting
examples from one or more classes can be difficult or even impos-
sible. For instance, suppose that we have a set of papers about a
particular topic and we want to retrieve, from a database of (unla-
belled) papers, those related to the ones in our set. We could try to
obtain a set of uninteresting documents by hand labelling some pa-
pers, but this can be a very tedious task. In addition, the hand-la-
belled negative examples have to be representative of all the
possible negative instances and this is an even harder task. Another
example where getting negative instances is impossible is the
identification of cancer genes (Furney et al., 2008). If we want to
identify which genes are related with cancer, we have a list of po-
sitive examples (genes that have already been identified as cancer-
related), but for the rest of the genes we have no information about
their label (it is not possible to ensure that a given gene is not re-
lated to cancer in any possible way) and, thus, we have no negative
instances. Therefore, it would be interesting to be able to build a
classifier only with positive and unlabelled examples.

We can overcome the lack of negative instances by training a
classifier using only positive and unlabelled examples. The prob-
lem of learning binary classifiers from only positive and unlabelled
examples, known in the literature as partially supervised classifica-
tion (Liu et al., 2002) or positive unlabelled learning (Denis et al.,
2002), deals with this sort of situation. Many new methodologies
have been developed to solve this problem (Calvo et al., 2007, De-
nis et al., 2003, Liu et al., 2003). In this paper we tackle the FSS
problem when only positive and unlabelled examples are available.
To the best of our knowledge, this is the first time the FSS problem
is explicitely addressed in the positive unlabelled learning
framework.

In this work we present an adaptation of the CFS algorithm that
can be used without negative examples. The results obtained with
this new algorithm have been compared with the ones obtained
with the original CFS. For this comparison, we have used synthetic
datasets obtained sampling Bayesian network models and real-life
data based datasets where the absence of negative examples has
been simulated.

The rest of the paper is organised as follows. In Section 2 the CFS
algorithm is described and our adaptation to the positive unla-
belled learning context is presented. In Section 3 our proposal is
compared with the original CFS on synthetic and real-life data
based problems. Finally, in Section 4 some conclusions and ideas
about the future work are provided.

2. CFS based feature subset selection

Before presenting the CFS algorithm and its adaptation to the
positive unlabelled learning context, some basic notation has to
be introduced. Instances are characterised by a feature vector X
of n components (Xi,...,X,) and a class variable C that can take
only two values, 0 and 1 (also referred to as negative and positive);
each feature X; can take t; values. For the sake of simplicity, the
probabilities P(X; =j),P(Xy, = v|X; =j) and P(X; =j|C = c) will be
abbreviated as P(x;), P(xu|X;) and P(x;|c). P(C = 1) will be denoted
as p.

2.1. The CFS metric

The CFS algorithm (Hall and Smith, 1997) is based on a metric
that evaluates the merit of a given set of features. This metric is
then used to guide a search for the best possible subset of vari-
ables. The merit function is based on the correlation between each
feature and the class (relevancy) and on the correlation among the
features in the subset (redundancy). This function can be expressed
as:

G Ka
Vk+k(k—1)ry

where k is the number of variables in the subset S, 7 is the average
correlation between the features in S and the class, and 7 is the
average correlation among the features in S.

In (Hall and Smith, 1997) the authors measure the correlation
between two variables X; and X, by means of the uncertainty coef-
ficient U(X,|X;), which is based on the mutual information I(X,; X;)
and the entropy H(X,) (Cover and Thomas, 2006). When the fea-
tures are represented as random discrete variables (either because
they are discrete or because they have been discretised) U(X,|X;) is
defined as:

_IXus Xi) _ HXu) — HXulXi)
UX) =) = A,
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Sets of irrelevant (poorly correlated with the class) and/or
redundant variables (with a high correlation among them) will
have a small Gs value associated. Therefore, this metric can be used
to guide the search for sets of relevant and non-redundant
variables.

The CFS approach consists of a search in the feature subset
space for a feature subset that maximises the Gs score. As this
search is an NP-hard problem, search heuristics are required to
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