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a  b  s  t  r  a  c  t

We  present  an  exactly  solvable  generalization  of  the  rate  equation  model  for  irreversible  growth  with
size-independent  capture  numbers  which  includes  desorption  of monomers.  It is  shown  that  the  universal
size distribution  shapes  depend  on  the  sole  parameter,  the  ratio  between  the  characteristic  diffusion  and
adsorption  areas.  We  perform  a  statistical  analysis  of  the  scanning  tunneling  microscopy  images  of  C60

clusters  deposited  onto  In-modified  Si(1  1 1)
√

3  × √
3-Au surfaces  at different  temperatures  and  deduce

the  experimental  size  distributions.  These  distributions  have  an  essentially  asymmetric  shape  with a
much  faster  decay  toward  larger  sizes.  Fitting  the  data  with  theoretical  distribution  shapes  yield  the
estimates  for  some  important  kinetic  parameters,  in  particular,  the temperature-dependent  diffusion
lengths  and  effective  lifetimes  of C60 monomers.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Studies of size distributions of different “clusters” such
as three-dimensional droplets [1], two-dimensional (2D) or
three-dimensional surface islands [2–16] and one-dimensional
nanowires [17] or linear peptide chains [18] is paramount for
understanding their growth behavior as well as the resulting phys-
ical properties of the cluster ensembles. Theoretical approaches
based on classical nucleation theory [1,4,5,19] apply whenever the
clusters of interest consist of at least several tens of monomers and
are terminated by distinct boundaries with a metastable phase.
Such systems can be well described within the frame of classical
approach involving macroscopic approximations for the forma-
tion energy and a continuum kinetic equation for time-dependent
distribution of nuclei over sizes, coupled with the material bal-
ance.

In many cases, however, we deal with particles consisting of
only a few monomers, while the decay of clusters can be neglected
on a time scale of interest. In this case, the cluster formation
is described within the mean field approach with discrete rate
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equations for irreversible growth [2,3,6–16,20,21], accounting for
the influx and sink of monomers as well as for their consumption
by growing clusters. For surface islands, the material influx is due
to vapor deposition, while the sink originates from desorption
from a substrate surface [15]. Irreversible growth models are
much simpler for the analysis and may  be even solved exactly for
some particular forms of the capture numbers. On the other hand,
continuum approximation is irrelevant for small clusters. Also,
the mean treatment fails when subtle correlations between island
size and separation affect the effective capture numbers and thus
control the size distribution shapes. Comprehensive reviews of the
advances in the theory of submonolayer surface growth, covering
the mean field rate equations as well as a more complex approaches
for the island size distribution can be found, e.g., in Refs. [9,21].

Here, we  present an exactly solvable generalization of the
discrete irreversible growth model for 2D islands with size-
independent capture numbers (such a model was considered
earlier, e.g., by Bartelt and Evans [7]), with desorption included.
We show that the distribution shapes are determined by the sole
dimensionless parameter, a combination of the deposition rate,
the lifetime before desorption and the effective diffusion length of
monomers. A more general theoretical analysis in the case of scaling
size dependences of the capture numbers in systems with desorp-
tion, along with a discussion of the asymptotic scaling properties
[7,9,21] is given in Ref. [20].
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Experimental part of the work deals with C60 fullerene clus-
ters deposited onto In-modified Si(1 1 1)

√
3  × √

3-Au surfaces at
different temperatures and then characterized by scanning tunnel-
ing microscopy (STM) [22–25]. Statistical analysis of STM images
enables a precise determination of not only the temperature-
dependent average size and density of clusters, but also of the size
distributions. We  find that the density of C60 clusters decreases and
their average size increases as the surface temperature increases,
while the size distributions have an essentially asymmetric shape.
We  then fit the experimental size spectra with our model solutions
and show a reasonable correlation of the results in all the cases
considered. These fits allow us to estimate some important kinetic
parameters of C60 monomers such as diffusion lengths, effective
lifetimes and activation energies.

2. Theoretical model of irreversible growth

In modeling of time-dependent concentrations ns(t) of the
immobile surface clusters As consisting of s monomers (size s for
brevity), we assume that the clusters are fed by surface diffusion of
the mobile monomers A1 that have the diffusion coefficient D, arrive
onto the surface at the time-independent rate F and desorb from
the surface with the characteristic time tdes. We  neglect the decay
of clusters on the time scale of interest, in which case the num-
ber of monomers in the critical cluster equals one and the cluster
growth proceeds irreversibly: As + A1 → As+1, with i = 1, 2, 3. . ..  The
rate equations describing such an irreversible growth write down
as [2,3,6–16,18,20,21]

dn1

dt
= F − n1

tdes
− 2D�1n2

1 − Dn1

∞∑
s=2

�sns; (1)

dns

dt
= Dn1(�s−1ns−1 − �sns) s≥2, (2)

with �s as the corresponding capture numbers. Eq. (1) shows
that the concentration of free monomers on the substrate sur-
face changes due to their adsorption, desorption and consumption
by the growing clusters, where the dimer formation requires two
monomers. The chain of Eq. (2) shows that the concentration ns

for each s ≥ 2 increases when monomers attach to s − 1-mers and
decreases when monomers attach to s-mers. Summing up Eq. (2)
for all s ≥ 2, the surface density of clusters, N = ∑∞

s=2ns, obeys the
equation

dN

dt
= D�1n2

1, (3)

which gives the nucleation rate in irreversible growth. These rate
equations should be solved with boundary conditions ns(t = 0) = 0
for all s ≥ 1, i.e., neither monomers nor clusters are present at the
beginning of deposition.

In our further analysis, we assume that �s = �* = const for all s ≥ 2
in the first approximation, so that each monomer is attached to a
cluster with the size-independent sticking probability �* when they
meet. However, the capture number for adatoms �1 can be different
from �*. In this case, Eqs. (1)–(3) are considerably simplified and
can be put in the dimensionless form by introducing the dimen-
sionless time � = t/tdes, the effective monomer diffusion length � =√

�∗Dtdes (accounting for the capture number �*), the normalized
cluster concentrations fs = �2ns, the surface density G = �2N, and the
new time-dependent variable z by definition

dz

d�
= f1, z(� = 0) = 0. (4)

Since all the growth rates now equal f1 and are s-independent,
the physical meaning of the z variable is very simple [20]: it cor-
responds to the right boundary of the size distribution (i.e., to the

0 25 50 75 100
0.0

0.2

0.4

0.6

z=100
z=75

z=50

N
o

rm
al

iz
ed

 c
o

n
ce

n
tr

at
io

n
s 

f s

Number of  mono mers  s

z=25 ν=5

Fig. 1. Normalized concentrations fs at the fixed growth conditions (v = 1) and
different z relating to different growth times.

maximum possible size of clusters having emerged at � = 0) in the
deterministic limit, where the SD shape is not affected by kinetic
fluctuations [19].

In these variables, Eq. (1) for the monomer concentration and
Eq. (3) for the island density become

df1
d�

= v − f1 − 2bf 2
1 − f1G; (5)

dG

d�
= bf 2

1 , (6)

with f1(� = 0) = G(� = 0) = 0. Here, the coefficient b = �1/�* accounts
for different capture number for adatoms and clusters. The control
parameter � is defined as follows:

v = �2Ftdes = �∗DFt2
des, (7)

and has clear meaning of the number of monomers arriving from
the vapor flux F onto the surface area �2 = �*Dtdes during the time
interval tdes.

Eq. (2) for the cluster concentrations become linear in terms of
the z variable:

df2
dz

= bf1 − f2

dfs
dz

= fs−1 − fs, s≥3.

(8)

The exact solutions to this system are easily obtained by
introducing the generating function for concentrations, as in Ref.
[7]:

fs+2(z) = b

s!

z∫

0

dxf1(z − x)xse−x, s≥0. (9)

Here, the normalized concentration of free monomers f1 is obtained
as a function of � from Eqs. (5) and (6) and then inverted as a func-
tion of z by means of Eq. (4). This solution generalizes the earlier
result of Bartelt and Evans [7] to systems with desorption, and is
presented in terms of the z variable which is more convenient for
further analysis.

The discrete size distributions of differently sized clusters, com-
puted from Eqs. (4) and (9), are shown in Figs. 1 and 2, for different
deposition times (z) and deposition conditions (�), respectively.
Here and below, we  put b = 1 in calculations, however, reasonable
variation of b does not strongly affect the spectrum shapes. It is
seen that the size distributions always have essentially asymmet-
ric shapes, with an abrupt right tail and a much slower regression
toward smaller i. It is noteworthy that these distributions are uni-
versal and depend on the sole parameter �, while fitting a particular
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