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Département d’Informatique, 8, rue Jean-Baptiste Fabre, B.P. 219, F-43006 Le Puy-en-Velay Cedex, France

Received 22 May 2007; received in revised form 1 December 2007
Available online 10 January 2008

Communicated by G. Borgefors

Abstract

Recently, Wang and Basu [Wang, T., Basu, A., 2007. A note on ‘a fully parallel 3D thinning algorithm and its applications’. Pattern
Recognition Lett. 28 (4), 501–506] have written a paper in which they claim that Ma and Sonka’s 3D thinning algorithm [Ma, C., Sonka,
M., 1996. A fully parallel 3D thinning algorithm and its applications. Computer Vision and Image Understanding 64 (3), 420–433] does
not preserve topology. As they highlight in their paper, a counterexample has been given in Lohou’s thesis [Lohou, C., 2001. Contribu-
tion à l’analyse topologique des images: étude d’algorithmes de squelettisation pour images 2D et 3D selon une approche topologie dig-
itale ou topologie discrète. Ph.D. thesis, Univ. de Marne-la-Vallée, France]. In fact, the previous Ma’s algorithm [Ma, C., 1995. A 3D
fully parallel thinning algorithm for generating medial faces. Pattern Recognition Lett. 16, 83–87] does not preserve topology. The goal
of this paper is to show how P-simple points have guided us towards a proof that Ma’s algorithm does not always preserve topology.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Some medical or graphical applications require the
transformation of objects while preserving their topology.
That leads to the well-known notion of a simple point: a
point in a binary image is said to be simple if its deletion
from the image ‘‘preserves the topology” (Kong and
Rosenfeld, 1989). Thinning algorithms are usually designed
as processes which remove simple points and obey several
other criteria. In fact, during the thinning process, certain
simple points are kept in order to preserve some geometri-
cal properties of the object. Such points are called end
points. For the 3D case, we can define two different kinds
of end points: curve-end points and surface-end points
(Borgefors et al., 1999). A thinning process which preserves
curve-end (resp. surface-end) points is called a curve (resp.
a surface) thinning algorithm.

A major problem which arises when designing thinning
algorithms is that the simultaneous removal of simple points
may change the topology of an object. This is the case, for
example, of a 2-voxel thick ribbon: if we delete in parallel
all simple points of such an object, it will disappear. To solve
this problem, three different solutions may be considered:

� either points which may be deleted must match at least
one amongst several given 3 � 3 � 3 masks or tem-
plates. Note that the templates are proposed in such a
way that the algorithm based on these templates pre-
serves the topology (Palágyi and Kuba, 1998a,b),
� or it is allowed to access to a neighborhood greater than

the 3 � 3 � 3 neighborhood centered around a consid-
ered point. Such a strategy may lead to fully parallel
thinning algorithms (Ma, 1995; Ma and Sonka, 1996;
Manzanera et al., 1999),
� or another class of simple point must be found in such a

way that if we delete in parallel such points, then the
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topology is preserved. This is what has been accom-
plished by the introduction of P-simple points
(Bertrand, 1995a). In fact, this notion leads to different
thinning schemes (Lohou and Bertrand, 2004, 2005,
2007).

We have the property that any algorithm removing only
subsets composed solely of P-simple points is guaranteed
to keep the topology unchanged. Let us consider a given
algorithm A. Let X be any subset of Z3, we define the set P

as the set of points of X which are considered as deletable
by A. Then, we try to prove that any point of P is a P-simple
point. If it is the case, then A is ensured to preserve topology.
Elsewhere, that means we have found an object which con-
tains a point x which is deletable by A, and such that x is
not P-simple. That does not imply that the algorithm does
not preserve topology (Lohou, 2001), nevertheless, it may
be interesting to deeper examinate this object: perhaps, A

does not preserve topology when the point x is deleted. This
is what we have obtained when we checked the soundness of
Ma’s algorithm (Lohou, 2001). The goal of this paper is to
show how, thanks to the notion of P-simple point, we have
found an object which has helped us to prove that Ma’s algo-
rithm does not always preserve the topology.

2. Basic notions of digital topology

2.1. Neighborhoods, connected components and holes

A point x 2 Z3 is defined by ðx1; x2; x3Þ with xi 2 Z. We
consider the three neighborhoods: N 26ðxÞ ¼ fx0 2 Z3 :
Max½jx1 � x01j; jx2 � x02j; jx3 � x03j� 6 1g, N 6ðxÞ ¼ fx0 2 Z3 :
jx1 � x01j þ jx2 � x02j þ jx3 � x03j 6 1g, and N 18ðxÞ ¼
fx0 2 Z3: jx1 � x01j þ jx2 � x02j þ jx3 � x03j 6 2g \ N 26ðxÞ. We
define N �nðxÞ ¼ N nðxÞ n fxg. We call, respectively, 6-, 18-,
26-neighbors of x the points of N �6ðxÞ, N �18ðxÞ n N �6ðxÞ,
N �26ðxÞ n N �18ðxÞ, such points are represented in Fig. 1a.

The 6-neighbors of x determine six major directions
(Fig. 1b): Up, Down, North, South, West, East; respec-
tively, denoted by U, D, N, S, W and E. Let Dir denote
one of these six directions. The point in N �6ðxÞ along the
direction Dir is called the Dir-neighbor of x and is denoted
by DirðxÞ. Let X � Z3. If the Dir-neighbor of x belongs to

X (the complement of X in Z3), then x is said to be a Dir-

border point. The points belonging to X (resp. X ) are called
black points (resp. white points).

Two points x and y are said to be n-adjacent if y 2 N �nðxÞ
ðn ¼ 6; 18; 26Þ. An n-path is a sequence of points x0; . . . ; xk,
with xi n-adjacent to xi�1 for any 1 6 i 6 k. If x0 ¼ xk, the
path is closed. Let X � Z3. Two points x 2 X and y 2 X
are n-connected in X if they can be linked by an n-path
included in X. The equivalence classes relative to this rela-
tion are the n-connected components of X. In order to have a
correspondence between the topology of X and that of X ,
we have to consider two different kinds of adjacency for
X and for X (Kong and Rosenfeld, 1989): if we use an n-
adjacency for X, we have to use another n-adjacency for
X . In this paper, we only consider ðn; nÞ ¼ ð26; 6Þ.

Let X � Z3 and x 2 X . A hole (sometimes called a tun-

nel, see Kong and Rosenfeld, 1989; Ma, 1994) in X is
detected when there exists a closed path in X which cannot
be deformed in X into a single point. In Z3, a deformation
is a sequence of elementary deformations such that a closed
path C0 is an elementary deformation of a closed path C if
C and C0 are the same excepted in a unit cube (Kong and
Rosenfeld, 1989; Bertrand, 1994).

2.2. Simple points and topological numbers

Let X � Z3. A point x 2 X is said to be simple if its
removal does not ‘‘change the topology” of the image, in
the sense that there is a one-to-one correspondence
between the components, the holes of X (resp. X ) and the
components, the holes of X n fxg (resp. X [ fxg), see Kong
(1989) for a precise definition.

The set composed of all n-connected components of X

which are n-adjacent to a point x is denoted by Cx
nðX Þ.

Let #X denote the number of elements which belong to
X. The topological numbers relative to X and x are the
two numbers (Bertrand, 1994): T 6ðx;X Þ ¼ #Cx

6½N �18ðxÞ
\X � and T 26ðx;X Þ ¼ #Cx

26½N �26ðxÞ \ X �. These numbers lead
to a very concise characterization of 3D simple points (Ber-
trand and Malandain, 1994): x 2 X is simple for X if and
only if T 26ðx;X Þ ¼ 1 and T 6ðx;X Þ ¼ 1. Let us consider the
two first configurations depicted in Fig. 2. In (a), for exam-
ple, both two points y and z belong to N �18ðxÞ \ X but there
is no 6-path of white points included in N �18ðxÞ \ X which
joins them; w belongs to N �18ðxÞ \ X but is not 6-adjacent
to x, thus ðT 26ðx;X Þ; T 6ðx;X ÞÞ ¼ ð1; 2Þ; therefore x is not
simple. In (b), there is a single black 26-connected compo-
nent in N �26ðxÞ \ X , w does not belong to N �18ðxÞ \ X , thus
ðT 26ðx;X Þ; T 6ðx;X ÞÞ ¼ ð1; 1Þ; therefore x is simple.

2.3. Simple sets and minimal non-simple sets

Let X be a subset of Z3. A subset S � X is a simple set of
X if the points of S can be arranged in a sequence
S ¼ fx1; . . . ; xkg in such a way that x1 is simple for X and
xi is simple for the subset X n fx1; . . . ; xi�1g, for
i ¼ 2; . . . ; k. A subset S � X is a minimal non-simple set if

Fig. 1. (a) The 6-, 18-, and 26-neighbors of x are, respectively, represented
by black triangles, black squares, and black circles, (b) the six major
directions.
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