Contents lists available at ScienceDirect

Applied Surface Science

journal homepage: www.elsevier.com/locate/apsusc

Full Length Article

One-dimensional Fe₂O₃/TiO₂ photoelectrode and investigation of its photoelectric properties in photoelectrochemical cell

Xi-Ming Song, Xin Zhou, Chunxue Yuan, Yu Zhang*, Qiang Tong, Ying Li, Luxia Cui, Daliang Liu, Wei Zhang

Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China

ARTICLE INFO

Article history: Received 17 October 2016 Received in revised form 18 November 2016 Accepted 19 November 2016 Available online 19 November 2016

Keywords: Fe₂O₃/TiO₂ photoelectrode Photoelectrochemical cell Heterogeneous structure Photocurrent Band structure

ABSTRACT

We reported a novel Fe_2O_3 /rutile TiO₂ nanorod (NR) arrays with the heterogeneous structure for photoelectrochemical (PEC) cells, which were fabricated on fluorine-doped tin oxide glass (FTO) substrates that serve as model architecture via a hydrothermal method. Fe_2O_3 was revealed as an inexpensive and eco-friendly semiconductor sensitizer to make TiO₂ respond to visible light. By using this photoanode, the photoelectric conversion and water splitting properties of PEC cells based on the one-dimensional (1D) Fe_2O_3/TiO_2 heterostructures were investigated in detail under simulated sunlight. Meanwhile, the optimization of photovoltaic performance was also achieved by regulating the amount of Fe_2O_3 . The open circuit voltage and short circuit current of the Fe_2O_3/TiO_2 solar cell can reach 0.435 V and 1.840 mA/cm², respectively. In addition, theoretical analysis of the photoelectric effect is preliminarily explored on the basis of the flat band potential results.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Photoelectrochemical (PEC) cells have attracted increasing attention due to their promising applications for solar cells and water splitting [1-3]. The conventional PEC cell consists of a semiconductor photoanode, a redox electrolyte, and a counter electrode. The semiconductors such as TiO₂, SrTiO₃ and ZnO usually serve as charge transport materials in photoanodes [4-6], due to their long lifetime and large diffusion coefficient of the photogenerated charge carriers, nevertheless, the visible light can not be used sufficiently in the photoanodes because of their wide band gap. Therefore, materials with narrow band gap such as organic dye [7,8], chalcogenide quantum dots (CdS [9–11], CuInS₂ [12], Ag₂S [13] etc) have been used to sensitize these wide-band gap materials. However, their poor stability and high costs greatly limit their further application. One method to solve these problems is directly using narrow-band gap material. For example, Bian and co-workers have used graphitic carbon nitride as visible-light-driven photoelectrode materials for PEC cells [14-17].

* Corresponding author. E-mail address: zhangy@lnu.edu.cn (Y. Zhang).

http://dx.doi.org/10.1016/j.apsusc.2016.11.143 0169-4332/© 2016 Elsevier B.V. All rights reserved.

 α -Fe₂O₃, a common semiconductor with a narrow-band gap of 2.1 eV, has demonstrated promising industrial applications because of its easy fabrication, good chemical resistance under caustic operating conditions, low cost and nontoxic nature [18-21]. But single α -Fe₂O₃ photoanode has been limited due to the short lifetime of photogenerated charge carriers, poor oxygen evolution reaction (OER) kinetics and short hole diffusion length [22–25]. Thus, semiconductor nanocomposites of α -Fe₂O₃ have been intensively investigated due to their good charge separation based on the interfacial heterogeneous structure. Wang et al. demonstrated mesoporous Fe₂O₃/TiO₂ heterostructured photocatalyst with strong optical absorption and enhanced catalytic activity. Fe₂O₃/TiO₂ heterostructured microsphere demonstrates highly visible light photoactivity because of their high electronhole separation efficiency and mesoporous microsphere structure [26]. Zhang et al. prepared one-dimensional (1D) mesoporous Fe₂O₃@TiO₂ core-shell photocatalyst, which possesses the combined advantages, thus delivering clearly enhanced photocatalytic activity for Rhodamine B under visible light irradiation and the degradation of methyl orange under UV light irradiation [27]. Yao et al. prepared Fe₂O₃-TiO₂ core-shell nanorod arrays by using the glancing angle deposition technique and post-deposition annealing, and showed higher catalytic efficiency for the degradation of methylene blue (MB) and greater efficiency for solar CO₂ conver-

sion under visible light illumination when compared with pure anatase TiO₂ or α -Fe₂O₃ nanorod arrays [28]. Recently, Jing and co-workers confirmed that the promoted charge separation results from the uncommon transfers of visible-excited high-energy electrons of Fe₂O₃ to rutile TiO₂. Moreover, it is more favorable for the uncommon electron transfers of α -Fe₂O₃ to rutile than to anatase, depending on the conduction band bottom level of TiO₂ [29]. Therefore, the high photocatalytic activities indicate strong photogenerated charges separation exist in the Fe₂O₃-TiO₂ heterostructure. It is easily expected that Fe₂O₃ is a promising material for sensitizer to form heterostructures with TiO₂. However, previous studies have mainly focused on the photocatalytic activities of Fe₂O₃/TiO₂ composites for the degradation of organic dyes. As far as we know, there are few reports on Fe₂O₃ as an effective sensitizers on PEC cells for photoelectric conversion and water splitting.

In the present study, we designed a novel one-dimensional Fe_2O_3/TiO_2 photoanode for solar cells and PEC water splitting, which was fabricated with Fe_2O_3 grown onto 1D TiO_2 nanorods via a hydrothermal method. The photoanode presents some favorable characteristics, which are easy fabrication, excellent light scatter effect, environmental friendliness and low cost [30]. The growth of Fe_2O_3 nanorods can be controlled by increasing the concentrations of FeCl₃ and NaNO₃. By hydrothermal method, Fe_2O_3 and TiO_2 can be combined to form a heterogeneous structure, endowed with the advantages of its specific structural features, which can better utilize visible light and improve the photoelectric conversion performance of single TiO_2 and Fe_2O_3 .

2. Experimental section

2.1. Synthesis of α -Fe₂O₃ film

Fe₂O₃ photoanode was fabricated via a hydrothermal method. A fluorine-doped tin oxide glass (FTO, Nippon Sheet Glass) of 2.0 × 2.5 cm was fully cleaned with deionized water, ethanol, acetone and ethyl acetate. The FTO was put into a fresh aqueous solution of 0.03 M FeCl₃ (99%, Aladdin) and 0.2 M NaNO₃ (99%, Sinopharm Chemical Reagent Co., Ltd) in an autoclave with the single conductive side facing the wall of the liner, then the autoclave was placed in a regular laboratory oven and heated to 100 °C for 12 h. After the reaction, the film formed on the FTO substrates was thoroughly rinsed with deionized water and annealed in air at 550 °C for 2 h at a ramp rate of 2 °C·min⁻¹.

2.2. Synthesis of pure TiO₂ NR arrays

Pure TiO₂ NR arrays were directly grown on FTO substrates (20 ohm per square) via a hydrothermal method reported previously. 15 mL of deionized water was mixed with 15 mL of concentrated hydrochloric acid (36–38%, Beijing Chemical Works). The mixture was stirred under ambient condition for 5 min. Then, 0.5 mL of tetrabutyl titanate (98+%, Aladdin) was added to the mixture and further stirred for 5 min. Then, 8 mL of the solution was transferred to a Teflon-lined stainless steel autoclave (15 mL volume), where a cleaned FTO glass was placed in the Teflon reactor with the conductive side facing down. The hydrothermal synthesis was maintained at 150 °C for 20 h in a regular laboratory oven. After the autoclave was cooled to room temperature, the FTO substrate with the TiO₂ NR arrays were taken out, rinsed extensively with deionized water and allowed to dry in ambient air.

2.3. Synthesis of Fe_2O_3/TiO_2 nanocomposites

For the preparation of Fe_2O_3/TiO_2 nanocomposites, an aqueous solution (10 mL) containing 0.03 M FeCl₃ (99%, Aladdin) and 0.2 M NaNO₃ (99%, Sinopharm Chemical Reagent Co., Ltd) was sealed in a

15 mL Teflon-lined stainless steel autoclave. A FTO grown with TiO₂ was placed in the liner with the FTO side facing the wall of the liner. The liner was put into a self-sealing autoclave and heated at 100 °C for 12 h. After the reaction, the films formed on the FTO substrates were thoroughly rinsed with deionized water and annealed in air at 550 °C for 2 h at a ramp rate of $2 °C \cdot min^{-1}$. The amount of Fe₂O₃ was regulated by increasing the concentrations of FeCl₃ and NaNO₃. 2Fe₂O₃/TiO₂ and 5Fe₂O₃/TiO₂ mean 2 times and 5 times of initial concentration of raw material, respectively.

2.4. Characterization

X-ray diffraction (XRD) patterns were characterized on a Bruker (Germany) D8 Advance diffractometer with Cu K α radiation in the range of $20^{\circ} - 80^{\circ}$ (2θ). Field emission scanning electron microscopy (FESEM) images were determined by using a FESEM JSM-6700F microscope. UV-vis diffuse reflectance spectroscopy (DRS) measurements were obtained on an UV-vis spectrometer (Shimadzu UV-2550) using BaSO₄ as a reference standard. In photovoltaic measurements, the Fe₂O₃/TiO₂ working electrodes together with platinized conducting glasses serve as a prototype solar cell device. The current density-voltage (I-V) curves were recorded by an electrochemistry workgroup (CHI660E, Shanghai). A 500 W xenon lamp (CHFXQ500W, Beijing Trusttech Co. Ltd.) was used as the light source and a filter plate (simulated AM 1.5 sunlight, Beijing Trusttech Co. Ltd.) was used to control the wavelength of light. The output light intensity was about 100 mW/cm², which was measured with a radiometer (Photoelectronic Instrument Co., attached to Beijing Normal University, China). The effective area of the solar cell is 0.25 cm^2 . The photocurrent density-time (I-t) curves were also carried out using this photovoltaic measurement. The solar cells were directly tested in chopping mode, light on-off repeatedly. The photovoltage generated by the solar cells can result in strong photocurrent and no applied bias was used. The flat band (FB) potentials of TiO₂ and Fe₂O₃ were determined from Mott-Schottky plots recorded by electrochemistry workgroup (CHI660E, Shanghai). A three-electrode single compartment immersed in 0.5 M Na₂SO₄ solution was used for capacitance analysis. The as-prepared film on FTO was used as a working electrode while Ag/AgCl electrodes and platinum electrodes were used as reference electrodes and counter electrodes, respectively. The PEC water splitting measurements were recorded by electrochemistry workstation system (CHI660E, Shanghai) with a Xe lamp (CHFXM500, Beijing Trusttech Co. Ltd.) as light source under AM 1.5 optical filter (Beijing Trusttech Co. Ltd.). A three-electrode configuration was used with the samples on FTO as working electrode, Ag/AgCl reference electrode and platinum counter electrode. The light intensity was calibrated to $100 \,\mathrm{mW/cm^2}$.

3. Results and discussion

3.1. Structural studies

The XRD patterns of TiO₂ NR arrays film, Fe₂O₃ film and Fe₂O₃/TiO₂ heterogeneous structure are depicted in Fig. 1. The crystal phase of the TiO₂ NR arrays was a rutile phase with a tetragonal structure (JCPDS 21–1276). The relatively high intensity of the (002) peak implies that the nanorods are well crystallized and oriented with respect to the FTO substrate [31,32]. The data of Fe₂O₃ film can be indexed to the characteristic peaks of α -Fe₂O₃ (JPCDS 86–0550), after subtracting the diffraction peaks originating from FTO. The peak intensities of TiO₂ in the composites are weak. This should be caused by the surface coating of the Fe₂O₃. Therefore α -Fe₂O₃ and TiO₂ were successfully combined together, and the heterogeneous structure was formed.

Download English Version:

https://daneshyari.com/en/article/5351564

Download Persian Version:

https://daneshyari.com/article/5351564

Daneshyari.com