Accepted Manuscript

Title: Boosting the catalytic performance of MoS_x cocatalysts over CdS nanoparticles for photocatalytic H_2 evolution by Co doping *via* a facile photochemical route

Authors: Yonggang Lei, Jianhua Hou, Fang Wang, Xiaohua Ma, Zhiliang Jin, Jing Xu, Shixiong Min

PII: S0169-4332(17)31520-9

DOI: http://dx.doi.org/doi:10.1016/j.apsusc.2017.05.165

Reference: APSUSC 36100

To appear in: APSUSC

Received date: 1-5-2017 Revised date: 19-5-2017 Accepted date: 19-5-2017

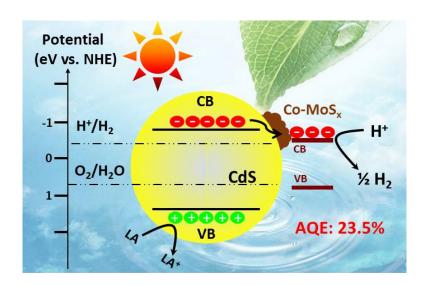
Please cite this article as: Yonggang Lei, Jianhua Hou, Fang Wang, Xiaohua Ma, Zhiliang Jin, Jing Xu, Shixiong Min, Boosting the catalytic performance of MoSx cocatalysts over CdS nanoparticles for photocatalytic H2 evolution by Co doping via a facile photochemical route, Applied Surface Sciencehttp://dx.doi.org/10.1016/j.apsusc.2017.05.165

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Boosting the catalytic performance of MoS_x cocatalysts over CdS nanoparticles for photocatalytic H_2 evolution by Co doping \emph{via} a facile photochemical route

Yonggang Lei, Jianhua Hou, Fang Wang, Xiaohua Ma, Zhiliang Jin, Jing Xu, Shixiong Min*


School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, Ningxia Province, China.

*Corresponding author.

E-mail: sxmin@nun.edu.cn (S. Min).

Tel: 86-951-2067917; Fax: 86-951-2067915;

Graphical abstract

Highlights

- Co doped MoS_x was loaded on CdS nanoparticles *via* a facile photochemical method.
- The loaded Co-MoS_x catalysts can efficiently catalyze H₂ evolution reaction under visible light.
- An apparent quantum efficiency of 23.5% for H₂ evolution was achieved at 420 nm.
- Co-MoS_x cocatalyst was more active than noble metals for photocatalytic H₂ evolution.

Download English Version:

https://daneshyari.com/en/article/5351706

Download Persian Version:

https://daneshyari.com/article/5351706

<u>Daneshyari.com</u>