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a  b  s  t  r  a  c  t

In  this  work,  we demonstrate  the  first use of  a  V-doped  MnO2 nanoparticle  electrode  for  zinc-ion  battery
(ZIB)  applications.  The  V-doped  MnO2 was  prepared  via  a  simple  redox  reaction  and  the  X-ray  diffraction
studies  confirmed  the  formation  of  pure  MnO2, accompanied  by  an  anisotropic  expansion  of MnO2 lattice,
suggesting  the  incorporation  of  V-ions  into  the  MnO2 framework.  V doping  of  MnO2 not  only  increased
the  specific  surface  area  but  also improved  the  electronic  conductivity.  When  Zn-storage  properties  were
tested, the  V-doped  MnO2 electrode  registered  a higher  discharge  capacity  of  266  mAh  g−1 compared  to
213  mAh  g−1 for  the  pure  MnO2 electrode.  On  prolonged  cycling,  the  doped  electrode  retained  31%  higher
capacity  than  that of  the  bare  MnO2 electrode  and  thereby  demonstrated  superior  cycling  performance.
This  study  may  pave  the  way  towards  understanding  the  enhancement  of the  energy  storage  proper-
ties  via  doping  in electrodes  of aqueous  ZIB  applications  and  also furthers  the efforts  for  the  practical
realization  of  a potential  eco-friendly  battery  system.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The vast developments in devices, such as laptop comput-
ers, mobile phones, digital cameras and electric vehicles, have
increased the demands for energy storage devices. Presently,
lithium-ion batteries (LIBs) play an important role in meeting
this demand; however, it is well known that LIBs have safety
issues as their components are toxic and flammable [1]. Therefore,
researchers are seeking alternative battery systems that are safe,
eco-friendly, non-corrosive, non-toxic, and low cost. In 2011, Xu
et al. proposed a zinc-ion battery (ZIB) that utilized an environ-
mentally benign electrode and electrolyte to deliver high storage
capacities at high current densities (rate capabilities) [2]. Since
then, ZIBs have attracted huge attention as one of the most inter-
esting candidates for replacing LIBs [3–8].

Manganese dioxide (MnO2) is one of the most widely used
electrode materials for battery applications due to its outstanding
electrochemical behavior, low cost, and environmental compati-
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bility [9]. Depending on the synthetic route used, MnO2 can form
into one of several crystallographic polymorphs, including �–,
ß–, �–, �–, and �–MnO2. The �–, ß– and �–polymorphs pos-
sess 1D tunnels in their structures, the �–MnO2 has a 2D layered
structure, while the �–polymorph has a 3D spinel structure [9].
Of these, �-MnO2 has received much interest in energy storage
applications owing to its (2 × 2) tunnel structure that facilitates
the hosting/release of multi-valent charge carrier ions. Our pre-
vious study showed that �-MnO2 nanorod electrode showed an
initial impressive zinc storage capacity of 233 mAh g−1 at a cur-
rent density of 83 mA g−1 [6]. However, during long-term cycling,
this electrode showed gradual capacity fading, which is suspected
to arise form manganese dissolution and structural degradation
related to the Jahn-Teller distortion [4,10]. Further, the high charge-
transfer resistance and hence low intrinsic electronic conductivity
limits the electrochemical performance of MnO2 electrodes during
cycling [10,11]. In addition, although the eco-friendly storage tech-
nology holds promise, just a few materials have been studied as
cathodes for ZIB applications. From this viewpoint, the research on
improving the performance of already known materials or identi-
fying new materials towards the progression of the ZIB technology
gains huge significance.
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One of the established strategies to improve the electronic trans-
port in MnO2 when used as electrode for LIBs and supercapacitors
is transition metal (TM) doping [11–15]. Liu et al. reported that
the anisotropic changes in the unit cell lattice parameters intro-
duced by Fe-doping in MnO2 facilitated enhanced lithium storage
capacities at high discharge/charge rates [13]. Hu et al. utilized the
first principle calculations and four-probe method to report the
significant enhancement of the electronic conductivity in MnO2
by V-doping [14]. When tested for supercapacitor applications,
the V-doped MnO2 electrode demonstrated excellent cycling sta-
bility and improved electrochemical properties. Gulbinska et al.
studied the lithium intercalation properties of V-doped MnO2 pre-
pared by microwave-assisted synthesis. They concluded that the
comparable ionic radii of V5+ (0.53 Å) and Mn4+ (0.54 Å) ions facil-
itate the easy inclusion of the V-ion into the MnO2 lattice [15].
Another comprehensive study on a high-capacity V-doped MnO2
electrode for primary lithium batteries LIBs demonstrated higher
structural stability arising from the stronger Mn-O bonds and lim-
ited cell volume expansion during the electrochemical discharge
reaction. These features ultimately contribute to their enhanced
electrochemical properties [16]. Bearing these in mind and on the
basis that there have been no attempts to improve the electrochem-
ical performance of MnO2 electrodes in ZIBs by TM-doping (to the
authors’ best knowledge), we herein examine the V-doping into
MnO2 with the aim of improving its electrochemical properties for
ZIB applications.

In this work, the bare and V-doped MnO2 nanoparticles were
successfully synthesized via a simple ambient temperature redox
reaction. As anticipated, the obtained V-doped MnO2 electrode
revealed an improvement in the electrical conductivity and hence
the electrochemical zinc-storage properties of MnO2. Moreover,
the doped electrode exhibited reduced capacity fading and better
cycling ability during galvanostatic measurements.

2. Experimental

The samples in the present study were synthesized via a simple
ambient redox reaction [5,16]. For the V-doped MnO2, 150 mmol
of Mn(CH3COO)2·4H2O was dissolved in 30 mL  of H2O (denoted:
Solution A). An optimum amount of V2O5 (0.5 mmol) was dissolved
in 20 mL  of H2O (denoted: Solution B). After this, Solution B was
added dropwise to the Solution A (to give Solution C), which was
then stirred for 30 min. Meanwhile, 100 mmol  of KMnO4 was dis-
solved in 50 mL  of H2O and added dropwise to Solution C. After
stirring for 5 h, a dark brown precipitate of MnO2 was obtained.
For comparison purposes, bare MnO2 was prepared in a similar
manner but without the addition of Solution B. The products were
filtered, washed with distilled water and ethanol, and dried at 80 ◦C
overnight before annealing at 450 ◦C for 5 h. The samples were then
thoroughly ground using an agate mortar before characterization.

The powder was characterized using X-ray diffraction (XRD,
Shimadzu X-ray diffractometer, Chonnam National University,
Republic of Korea) with Cu-K� radiation (� = 1.54056 Å) operat-
ing at 40 kV and 30 mA  between 2� values of 10–80◦ in steps
of 0.01◦. Field emission scanning electron microscopy (FE-SEM S-
4700 Hitachi, Chonnam National University, Republic of Korea) and
energy dispersive X-ray (EDX) mapping (EX-200 Hitachi, Chon-
nam National University, Republic of Korea) studies were carried
out to analyze the morphology and elemental distribution of the
particles, respectively. The inductively coupled plasma atomic
emission spectroscopy (ICP-AES) was performed using OPTIMA
4300 DV from PerkinElmer (Chonnam National University Center
for Research Facilities, Republic of Korea). The synchrotron X-ray
absorption near edge structure (XANES) was performed using BL7D
beam line at the Pohang Light Source (PLS), a third-generation

synchrotron radiation source. The K-edge position of a Mn  foil at
6539 eV was  used to calibrate the monochromator energy. ATHENA
software was then used to analyze the obtained spectra.

Nitrogen adsorption and desorption measurements were car-
ried out using a Micromeritics ASAP 2020 (Norcross, GA, USA). The
surface areas of the powders were determined using the Brunauer-
Emmet-Teller (BET) method. The powders were also examined
by XPS (Thermo VG Scientific instrument, Multilab 2000, Chon-
nam National University Center for Research Facilities, Republic
of Korea) using Al K� as the X-ray source. The spectrometer was
calibrated with respect to the C 1s peak binding energy of 284.6 eV.

Both bare and V-doped MnO2, cathodes were prepared by mix-
ing 70 wt.% of active material, 20 wt.% of Ketjen black, and 10 wt.%
of teflonated acetylene black (TAB) into a paste and pressed onto
a stainless-steel mesh. Before assembling coin cells, the prepared
cathodes were dried overnight under vacuum at 120 ◦C. Zn metal
foil (0.25 mm)  was used as the anode and an aqueous solution of
1 M ZnSO4 (pH 4.0) was used as the electrolyte. The 2032-type
coin cells were assembled in an open-air atmosphere by stacking a
glass fiber filled with the electrolyte between the prepared cathode
and the zinc foil anode. The cells were aged overnight before the
electrochemical measurements. Cyclic voltammetry (CV) and elec-
trochemical impedance spectroscopy (EIS) were performed using
Bio Logic Science Instrument (VSP 1075). Discharge/charge mea-
surements were carried out at room temperature using a BTS 2004H
(Nagano Keiki Co., Ltd, Ohta-ku, Tokyo, Japan). The recovered elec-
trodes were analyzed using X’Pert Pro PANalytical Model X-ray
diffractometer (Chonnam National University, Republic of Korea).

3. Results and discussion

In this work, the samples were prepared via a simple redox
reaction which can be represented as follows:

3Mn(CH3COO)2 + 2KMnO4 + 2H2O → 5MnO2 + 4CH3COOH + 2CH3COOK

This redox reaction process is commonly used to prepare both
bare and TM-doped MnO2 samples [17]. The XRD patterns of the V-
doped MnO2 sample compared to that of the bare MnO2, in Fig. 1(a),
can be well indexed to �-MnO2 (space group I4/m, JCPDS card No.
44-0141) with tetragonal symmetry. This observation confirms that
after vanadium doping, the tetragonal crystal structure of �-MnO2
is largely retained. The (211) peak of the V-doped MnO2 sample
shows a slight shift towards lower scanning angles and is most
likely related to the incorporation of V-ions into the MnO2 struc-
ture, as can be seen in Fig. 1(b), resulting in anisotropic changes
to the unit cell parameters, which will be beneficial for guest-ion
insertion [19]. The unit cell parameters of the V-doped MnO2 were
calculated to be a = 9.832 Å and c = 2.863 Å. However, the calculated
unit cell parameters of the bare MnO2 sample were slightly lower
(a = 9.739 Å and c = 2.839 Å), as anticipated. Further, the unit cell
volumes of the V-doped MnO2 was determined to be 276.76 Å3,
compared to 269.27 Å3 for the bare sample. These observations
appear to support the conclusion by Hu et al. that, on V-doping,
vanadium ions were located in the tunnels of �-MnO2 [14]. Another
recent study also suggested the possibility of incorporating big-
ger cations as Ce3+, with 0.10 nm of ionic radius, in the tunnels
of �-MnO2 [18]. Nevertheless, in the present case, the average
crystallite sizes (d) of the V-doped and bare MnO2 samples calcu-
lated from the (310) X-ray line width using the Scherrer equation,
d = 0.9�/�1/2cos � (where � is the X-ray wavelength, �1/2 is the
full width at half maximum, and � is the diffraction angle) were
determined to be 21 and 31 nm,  respectively. The XRD studies thus
confirmed that V-doping does not significantly change the parent
MnO2 structure.

ICP measurement was performed to measure the vanadium con-
tent in the V-doped MnO2 sample and the results confirmed the
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