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Abstract

Discriminative training for hidden Markov models (HMMs) has been a central theme in speech recognition research for many years.
One most popular technique is minimum classification error (MCE) training, with the objective function closely related to the empirical
error rate and with the optimization method based traditionally on gradient descent. In this paper, we provide a new look at the MCE
technique in two ways. First, we develop a non-trivial framework in which the MCE objective function is re-formulated as a rational
function for multiple sentence-level training tokens. Second, using this novel re-formulation, we develop a new optimization method
for discriminatively estimating HMM parameters based on growth transformation or extended Baum–Welch algorithm. Technical
details are given for the use of lattices as a rich representation of competing candidates for the MCE training.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Hidden Markov models (HMMs) have been a well
established framework for a variety of pattern recognition
applications, including, most prominently, speech recogni-
tion applications (Rabiner and Juang, 1993; Bahl et al.,
1987; Deng and O’Shaughnessy, 2003). One most attractive
feature of the HMM framework is that its parameters can
be learned automatically from the training data. In early
days of HMMs, the parameters were learned by the maxi-
mum likelihood (ML) criterion based on the EM algorithm
(e.g., Bahl et al., 1987; Rabiner and Juang, 1993). Improve-
ment of parameter learning beyond ML has been pursued
for many years (Brown, 1987; Chou, 2003; Deng et al.,
2005a,b; Gopalakrishnan et al., 1991; He and Chou,
2003; Juang and Katagiri, 1992; Juang et al., 1997; Mache-
rey et al., 2005; McDermott et al., 2007; Normandin, 1991;
Povey and Woodland, 2002; Povey et al., 2003, 2004;
Povey, 2004; Rathinavalu and Deng, 1998; Schluter

et al., 2001), based on the concept of discrimination against
classes, in contrast to maximizing likelihood of each indi-
vidual class. The reason behind discriminative training is
that complete knowledge of speech data distributions is
lacking and training data is always limited. It is not until
recently that discriminative training has shown uniform
success in speech recognition over virtually all tasks,
including especially large tasks (e.g., Woodland and Povey,
2000; Povey, 2004).

Among several types of discriminative training for
HMMs, one prominent type is minimum classification
error (MCE) training (Chou, 2003; Juang and Katagiri,
1992; Juang et al., 1997; He and Chou, 2003; Macherey
et al., 2005; McDermott et al., 2007; Roux and McDer-
mott, 2005; Rathinavalu and Deng, 1998). The essence of
MCE is to define the objective function for optimization
that is closely related to the empirical classification errors.
This is more desirable than other types of discriminative
training that are less closely related to the classification
errors. The conventional MCE has been based on the
sequential gradient-descent based technique, named gener-
alized probabilistic descent (GPD), which optimizes the
objective function as a highly complex function of the
HMM parameters.
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Another significant advance in discriminative training is
the development and application of a special type of optimi-
zation technique, called growth transformation (GT) or
extended Baum–Welch (EBW) algorithm when it is used
for HMM parameter estimation. GT is an iterative optimi-
zation scheme where if the parameter set K is subject to a
transformation K = T(K 0), then the objective function
‘‘grows’’ in its value O(K) > O(K 0) unless K = K 0. In
(Gopalakrishnan et al., 1991), GT/EBW was developed
for rational functions such as the mutual information as
the optimization criterion. Maximization of mutual infor-
mation (MMI) as a form of discriminative criterion for
the discrete HMM was described in (Gopalakrishnan
et al., 1991). This has been extended to the continuous-den-
sity HMM in (Normandin, 1991; Gunawardana and Byrne,
2001). The significance of GT/EBW lies in its effectiveness
and closed-form parameter updating for large-scale optimi-
zation problems with difficult objective functions. Com-
pared with the gradient based techniques which often
require special and delicate care for tuning the parameter-
dependent learning rate, GT/EBW mitigates such require-
ments and with the closed-form updating formula it is
generally faster in reaching algorithm convergence.

Mutual information is naturally in the form of a rational
function and MMI is obviously suited to GT/EBW optimi-
zation. However, as a discriminative criterion, it is only
indirectly related to classification errors. On the other
hand, MCE as a discriminative criterion is closely related
to classification errors, but it is not naturally in the form
of a rational function when there are multiple utterance
tokens in the training data. Hence, it has been a tradition
to use the gradient-descent techniques (GPD) for optimiz-
ing the MCE criterion (Chou, 2003; Juang et al., 1997;
McDermott et al., 2007; Rathinavalu and Deng, 1998).
In this paper, we break this long-held tradition and take
a fresh look at the MCE. This new analysis and formu-
lation of the MCE covers two main issues. First we re-
examine the MCE criterion. Second the results of the
re-examination permit the use of the new GT/EBW optimi-
zation technique for optimizing the MCE criterion with
respect to the HMM parameters.

The organization of this paper is as follows. In Section
2, an overview of the traditional MCE is provided. Then,
in Section 3, we reformulate the MCE criterion (with multi-
ple training tokens) into a rational functional form. We
provide a rigorous proof by induction for the correctness
of the rational functional form. Given this non-trivial
reformulation, in Section 4, we present in detail a novel
GT/EBW based optimization technique for estimating
the parameters of the Gaussian HMMs. In Section 5, the
lattice-based MCE training is described, and a summary
is given in Section 6.

2. Overview of minimum classification error (MCE) training

We denote by K the parameter set of the generative
model expressed in terms of a joint statistical distribution

pKðX ; SÞ ¼ pKðX jSÞP ðSÞ; ð1Þ

on the observation training data sequence X and on the
corresponding label sequence S, where we assume the
parameters in the ‘‘language model’’ P(S) are not subject
to optimization. We use r = 1 , . . .,R as the index for ‘‘to-
ken’’ (e.g., a single sentence or utterance) in the training
data, and each token consists of a ‘‘string’’ of an observa-
tion data sequence: Xr = xr,1, . . .,xr,Tr, with the correspond-
ing label (e.g., word) sequence: Sr = wr,1, . . .,wr,Nr. That is,
Sr denotes correct label sequence for token r. Further, we
use sr to denote all possible label sequences for the rth to-
ken, including the correct label sequence Sr and all other
incorrect label sequences.

MCE learning was originally introduced for multiple-
category classification problems where the smoothed error
rate is minimized for isolated ‘‘tokens’’ (Juang and Katag-
iri, 1992). It was later generalized to minimize the
smoothed ‘‘sentence token’’ or string-level error rate
(Juang et al., 1997; Chou, 2003), which is known as
‘‘embedded MCE’’.

The MCE objective function is defined first based on a
set of class discriminant functions and a special type of loss
function. Then the model is estimated to minimize the
expected loss that is closely related to the recognition error
rate of the classifier.

In embedded MCE training, a set of discriminant func-
tions is first defined based on the correct string Sr and the N

most confusable competing strings, sr,1, . . ., sr,N. Define the
top N best competing strings as

sr;1 ¼ arg maxsr :sr 6¼Srflog pKðX r; srÞg;
sr;i ¼ arg maxsr :sr 6¼Sr ;sr 6¼sr;1;...;sr;i�1

log pKðX r; srÞf g i ¼ 2; . . . ;N :

Then, the discriminant functions for the correct string
and the N competing strings take the form of

gsr
ðX r; KÞ ¼ log pKðX r; srÞ; sr 2 fSr; sr;1; . . . ; sr;Ng:

And the decision rule for the recognizer or classifier is
the one that for the observation data sequence, Xr,

CðX rÞ ¼ s�r if s�r ¼ arg max
sr

gsr
ðX r; KÞ:

Next, a misclassification measure in MCE is defined.
For the general N-best MCE training, the following mis-
classification measure has been widely used (Juang et al.,
1997):

drðX r;KÞ ¼ � log pKðX r; SrÞ

þ log
1

N

X
sr ;sr 6¼Sr

exp g log pKðX r; srÞ½ �
( )1

g

: ð2Þ

This misclassification measure function emulates the
decision rule, i.e., dr(Xr,K) P 0 implies misclassification
and dr(Xr,K) < 0 implies a correct classification. The sec-
ond term in (2) is a soft-max function, which counts the
scores of all N competitive candidates. It can be looked
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