Contents lists available at ScienceDirect

Applied Surface Science

journal homepage: www.elsevier.com/locate/apsusc

Full Length Article

A transparent nickel selenide counter electrode for high efficient dye-sensitized solar cells

Applied Surface Science

Jia Dong, Jihuai Wu*, Jinbiao Jia, Jinhua Ge, Quanlin Bao, Chaotao Wang, Leging Fan

Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Xiamen 361021, China

ARTICLE INFO

Article history Received 26 October 2016 Received in revised form 10 December 2016 Accepted 29 December 2016 Available online 30 December 2016

Keywords: Dye-sensitized solar cell Counter electrode Nickel selenide Transparent

ABSTRACT

Nickel selenide (Ni_{0.85}Se) was synthesized by a facile one-step hydrothermal reaction and Ni_{0.85}Se film was prepared by spin-coating Ni_{0.85}Se ink on FTO and used as counter electrode (CE) in dye-sensitized solar cells (DSSC). The Ni_{0.85}Se CEs not only show high transmittance in visible range, but also possess remarkable electrocatalytic activity toward I^{-}/I_{3}^{-} . The electrocatalytic ability of Ni_{0.85}Se films was verified by cyclic voltammetry, electrochemical impedance spectroscopy and Tafel polarization curves. The DSSC using Ni_{0.85}Se CE exhibits a power conversion efficiency (PCE) of 8.96%, while the DSSC consisting of sputtered Pt CE only exhibits a PCE of 8.15%. When adding a mirror under Ni_{0.85}Se CE, the resultant DSSC exhibits a PCE of 10.76%, which exceeds that of a DSSC based on sputtered Pt CE (8.44%) by 27.49%.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Dye-sensitized solar cell (DSSC) is a great scientific invention to deal with the growing concern about energy crisis and has aroused wide attention since its appearance in 1991 [1]. So far, the best conversion efficiency of 14.7% has been obtained by co-photosensitized with an alkoxysilyl-anchor dye and a carboxy-anchor organic dye [2]. Generally speaking, a DSSC is composed of dye-adsorbed TiO₂ film, electrolyte with the redox couple of iodide/triiodide (I^{-}/I_{3}^{-}) , and platinum (Pt) counter electrode (CE). However, the high cost of Pt make DSSC devices difficult to commercialize. Hence, many substitute materials have been proposed, such as alloy materials [3-6]. carbon materials [7–10], conducting polymers [11–13] and transition metal compounds which include carbides [14,15], nitrides [14,16] and chalcogenide [17–24]. Among these substitutes, transition metal compounds have exhibited excellent electrocatalytic activity in particular. Besides, they are low-cost and abundant, indicating high potential of replacing Pt as CEs in DSSC.

In this work, nickel selenide ($Ni_{0.85}Se$) was prepared by a facile one-step hydrothermal process, Ni_{0.85}Se film was prepared by spincoating Ni_{0.85}Se ink on FTO and used as counter electrode in DSSC. It is noteworthy that Ni_{0.85}Se CE shows a high power conversion efficiency (PCE) of 8.96% under 100 mW cm⁻², which is higher than

Corresponding author. E-mail address: jhwu@hqu.edu.cn (J. Wu).

http://dx.doi.org/10.1016/j.apsusc.2016.12.229 0169-4332/© 2017 Elsevier B.V. All rights reserved. that of a DSSC with sputtered Pt CE (8.15%). Due to its high transparency, when using a mirror under Ni_{0.85}Se CE, the PCE is up to 10.76%.

2. Experimental

2.1. Synthesis of Ni_{0.85}Se CEs

In a typical experiment, 0.7896 g of Se powder (99.999%), 0.5675 g of NaBH₄ (96%) and 25 ml distilled water were added into a beaker, reacted for 30 min to form a reddish brown solution A. Transparent solution B in 100 ml autoclave is made up of 1.1885 g of NiCl₂· $6H_2O$, 0.75 g of PVP (polyvinylpyrrolidone, MW = 10000) and 50 ml distilled water. The solution A was slowly added to the solution B and stirred for another 10 min. The mixture was heated at 180 °C for 12 h. When the process was completed, the black precipitate was collected by centrifugal separation at a rate of 8000 rpm for 6 min and washed several times by distilled water. Afterwards, the wet black products were dispersed in ethanol with different concentrations, and ultra-sonic for about 60 min. Then the Ni_{0.85}Se ink was obtained. The concentration of Ni_{0.85}Se ink in this experiment was 0.02, 0.04 and 0.06 g ml⁻¹. Ni_{0.85}Se CEs were fabricated by spincoating Ni_{0.85}Se ink on FTO conducting glass substrate (Fluorine doped tin oxide over-layer, sheet resistance $14\,\Omega\,cm^{-1}$) at a rate of 3000 rpm for 20 s. These CEs were simply marked as Ni_{0.85}Se-x (x = concentration of Ni_{0.85}Se ink, $g m l^{-1}$) CEs.

2.2. Fabrication of DSSCs

The dye-sensitized TiO_2 photoanodes were prepared according to our previous report [25] and the active areas were about 0.11 cm². The I⁻/I₃⁻ electrolyte was a acetonitrile solution containing 0.10 M tetramethyl ammonium iodide, 0.1 M tetraethyl ammonium iodide, 0.1 M tetrabutyl ammonium iodide, 0.1 M sodium iodide, 0.1 M potassium iodide, 0.1 M lithium iodide, 0.05 M iodine and 0.50 M 4-*tert*-butyl-pyridine. The sputtered Pt CE was bought from Wuhan Lattice Solar Energy Technology Co. Ltd.

2.3. Characterizations and measurements

The composition of Ni_{0.85}Se powder was examined by Xray diffraction (XRD, Cu Ka radiation, Smart Lab 3 kW, Rigaku, Japan). The morphologies of the as-prepared Ni_{0.85}Se CEs were observed by a field emission scanning electron microscopy (FESEM, SU8010, HITACHI). A Lamda 950 UV/vis-NIR spectrophotometer was used to evaluate the optical transparencies of Ni_{0.85}Se CEs. The photocurrent-voltage (I-V) curves were measured by an AM 1.5G simulated solar light coming from an AAA solar simulator (Newport-94043A) and the digital source meter is Keithley 2400. The cyclic voltammetry (CV) curves were recorded in a threeelectrode system with CHI660E setup at a scan rate of 50 mV s^{-1} . The three-electrode system use a Pt sheet as counter electrode, an Ag/AgCl electrode as reference electrode and various CEs as working electrode. The electrolyte in three-electrode system is acetonitrile solution with 10 mM LiI, 1 mM I₂ and 0.1 M LiClO₄ into it. Electrochemical impedance spectroscopy (EIS) measurements and Tafel polarization curves were tested by assembling symmetric cell with a Zennium electrochemical workstation (IM6). The EIS measurements were carried out at an amplitude of 5 mV in a frequency range from 100 mHz to 100 kHz and the results of EIS were analyzed with Zview software.

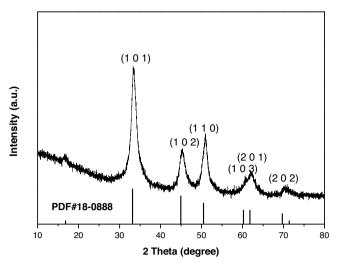


Fig. 1. XRD pattern for Ni_{0.85}Se powder.

3. Results and discussion

3.1. Compositions

The chemical composition of Ni_{0.85}Se powder was characterized by X-ray diffraction (XRD) and the XRD pattern is shown in Fig. 1. The XRD pattern in Fig. 1 reveals that the powder is mainly composed of Ni_{0.85}Se (PDF#18-0888). Three strong diffraction peaks at 33.5°, 45.6° and 51.2° can be corresponded to the crystal planes of (101), (102) and (110), respectively.

3.2. Morphology observation

Fig. 2 shows the surface morphologies of FTO and different $Ni_{0.85}Se$ film on FTO. The FESEM images reveal that pristine FTO layer is scalelike and the surface become foggy when $Ni_{0.85}Se$

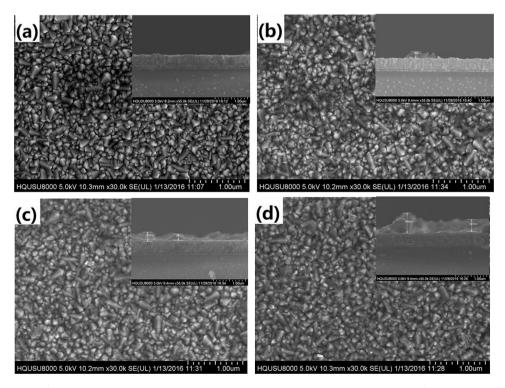


Fig. 2. FESEM images of (a) FTO, (b) Ni_{0.85}Se-0.02, (c) Ni_{0.85}Se-0.04 and (d) Ni_{0.85}Se-0.06, the inset is sectional view of the corresponding films on FTO.

Download English Version:

https://daneshyari.com/en/article/5352776

Download Persian Version:

https://daneshyari.com/article/5352776

Daneshyari.com