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a b s t r a c t

Clustering plays an important role in data mining. Some of the most famous clustering methods belong to

the family of k-means algorithms. A decade ago, Lingras and West enriched the field of soft clustering by

introducing rough k-means. Although rough clustering has been a very active field of research a pointed

evaluation if it is really needed is still missing. Thus, the objective of the paper is to compare rough k-means

and k-means. In k-means the number of correctly clustered objects is to be maximized which corresponds

to minimizing the number of incorrectly clustered objects. In contrast to k-means, in rough clustering the

numbers of correctly and incorrectly clustered objects are not complements anymore. Hence, in rough clus-

tering the number of incorrectly clustered objects can be explicitly minimized. This is of striking relevance for

many real life applications where minimizing the number of incorrectly clustered objects is more important

than maximizing the number of correctly clustered objects. Therefore, we argue that rough k-means is often

a strong alternative to k-means.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Clustering is one of the most popular methods in data mining

with countless real-life applications. Its objective is to group similar

objects into the same cluster while dissimilar objects should belong

to different clusters. A three-digit number of clustering approaches

has probably been proposed to date. They include extensions and

derivatives of existing ones but also approaches that established new

branches of clustering algorithms. Categorizing such a huge number

of approaches is a challenge in itself (see, e.g., Ref. [5, p. 56]) for possi-

ble classificatory schemes). Frequently used categorizations include

hierarchical in contrast to partitive algorithms or hard as opposed to

soft clustering. Within the group of partitive algorithms k-means [13]

is probably the most famous and widely used. In our paper, we also

refer to it as hard k-means. In the soft clustering domain fuzzy [1] and

possibilistic [6] c-means play prominent roles.

Rough sets theory [19] has become an important part of soft com-

puting. A decade ago, Lingras and West [12] proposed rough k-means.

In the past ten years, rough clustering has been a very active field of

research with many methodical enhancements and applications in a

diverse range of domains (see Section 2 for a brief review). But with

respect to a virtually unmanageable number of existing clustering
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algorithms, including ‘blockbusters’ like k-means, any new approach

should be critically challenged: Does it provide anything novel that

goes beyond pure academic interest?

Therefore, our objective is to investigate if there is any need for

rough clustering. To obtain a manageable field of research we limit

ourselves to the partitive clustering bioscope and spend special in-

terest to hard and rough k-means. We show that the definition of a

cluster by two approximations in rough clustering provides distinct

advantages over hard k-means especially when penalties are imposed

on incorrectly clustered objects.

The remainder of the paper is organized as follows. In the next sec-

tion, we give a brief introduction to rough clustering. In Section 3, we

discuss validation methods for hard and rough clustering. In Section 4,

we perform comparative experiments showing the enriching inter-

pretational possibilities of rough clustering in comparison to hard

clustering.

2. Principles of rough clustering

2.1. Fundamental idea of rough clustering

Rough k-means was introduced by Lingras and West [12]. In con-

trast to original rough set theory that deals with categorical data

rough k-means is derived from the interval interpretation of rough

sets [12,30]. Like hard k-means it uses the distances between objects

and means to determine the clusters.

Similar to original rough sets theory, a cluster C is defined by a

lower approximation C and an upper approximation C. The lower
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approximation is a subset of the upper approximation: C ⊆ C . The

region of the upper approximation that is not covered by the lower

approximation is called boundary: Ĉ = C \ C. Objects assigned to the

lower approximation surely belong to the cluster. Boundary objects

also belong to one and only one cluster. However, due to missing

or contradicting information, their membership cannot be decided.

Obviously, a boundary object has to belong to two or more boundaries

indicating its unclear membership status. As we will discuss further

down boundaries function as ‘buffer zones’ for these objects; this

often constitutes a crucial advantage of rough over hard clustering

with respect to the number of incorrectly clustered objects.

In the mean time, many extensions of rough k-means have been

proposed. They include some refinements [21], evolutionary versions

(e.g., Ref. [15]), rough medoids [25] or dynamic approaches [27]. Hy-

brid clustering merging fuzzy, possibilistic and rough approaches in-

clude algorithms of Maji and Pal [14] or Mitra and Barmann [17].

Recently, Peters [22] proposed π rough k-means that uses the Prin-

ciple of Indifference [7]. Areas of applications include bioinformatics

[15,16], traffic control [8] and business [9]. For more on rough cluster-

ing see, e.g., Refs. [10,11]; for a survey on soft clustering, including an

analysis of the relationship between hard, fuzzy and rough clustering,

the reader is referred to Ref. [24].

2.2. Algorithmic structure

Algorithmically, rough k-means is closely related to hard k-means.

The only difference is that rough clusters are defined by two approxi-

mations instead of one and only one crisp border as in hard k-means.

This has the following two implications for rough clustering: (1) The

means are derived from weighted sums of the objects depending on

their memberships to the approximations. (2) The decision if an ob-

ject is assigned to a lower approximation of a cluster or its boundary

is based on a user-defined threshold parameter ζ .

In the further course of our paper, we apply π rough k-means [22].

The main advantage of π rough k-means in comparison to previous

rough k-means algorithms is that it does not require any user-defined

weights. The weights are derived from Laplace’s Principle of Indiffer-

ence [7]. For example, if an object is member of three boundaries its

weight to each of the corresponding clusters equals the reciprocal of

its number of memberships (in our example, its weight is 1
3 ). Accord-

ingly, an object in a lower approximation is weighted by 1
1 since it

belongs to one and only one cluster.

By applying Laplace’s Principle of Indifference, the weights can be

interpreted as probabilities in π rough k-means. This implies that all

objects xn can be treated identically, independently whether they are

members of a lower approximation or a boundary. They only differ by

their numbers of memberships |Tn|: |Tn| = 1 for an object xn in a lower

approximation and 2 ≤ |T̂n| ≤ K (K the number of clusters) for bound-

ary objects. The range of the membership probabilities (weights) is:

w = 1
1 = 1 and 1

K ≤ ŵ ≤ 1
2 (with w = 1

|Tn| and ŵ = 1
|T̂n| ).

Hence, we no longer need to differentiate between objects in lower

approximations and boundaries. It is sufficient to consider all objects

of a cluster (i.e., the objects in its upper approximation) and distin-

guish them by their membership probabilities 1
|Tn| only.1

For a set of N objects xn (n = 1, . . . , N) π rough k-means proceeds

as follows:2

1 In π rough k-means, like in fuzzy c-means, the weights specify the degree of mem-

bership of an object to a cluster: in π rough k-means they are based on probabilities

and in fuzzy c-means they are derived from similarities. In contrast to this, weights

imposed on the variables (derived from their importance) have also been proposed in

clustering, e.g., by Huang et al. [4].
2 For sake of simplicity, we present π rough k-means without the optional step that

prevents (highly unlikely) divisions by 0 when calculating the means.

An implementation of π rough k-means in R [28] is available at CRAIN (package:

SoftClustering).

Initialization

• Set the number of clusters 1 < K < N (k = 1, . . . , K) and the thresh-

old parameter ζ � 1.
• Determine the initial means (e.g., randomly or maximum distance

between means). Assign each object xn to the corresponding upper

approximation of its nearest mean.3

Iteration

• Compute the new means:

mk =
∑

xn∈Ck

xn|Tn|∑
xn∈Ck

1
|Tn|

(1)

with |Tn|: number of upper approximations xn belongs to.
• Assign the objects to the approximations:

– Determine the nearest mean of object xn:

dmin
h = d(xn, mh) = min

k=1,...,K
d(xn, mk) (2)

– Determine similarly near means to xn. Including the nearest

mean to xn we obtain:

Tn =
{

t :
d(xn, mt)

dmin
h

≤ ζ

}
(3)

– Assign object xn to the upper approximations:

xn ∈ Ct,∀t ∈ Tn (4)

• IF [current upper approximations unchanged to previous ∨
maximum number of iterations reached]

THEN [stop] ELSE [repeat iteration].

2.3. Discussion of selected properties

Upper approximations only. We would like to emphasize again that

the algorithm requires only upper approximations. They fully de-

fine rough clusters. The corresponding lower approximations and

boundaries can be easily derived out of them: |Tn| = 1 ⇔ xn ∈ Ct and

2 ≤ |Tn| ≤ K ⇔ xn ∈ Ĉt , ∀t ∈ Tn.

Initial settings. In general, the initial parameters in rough k-means

are: (1) the weights, w and ŵ = 1 − w, (2) the number of clusters K

and (3) the threshold parameter ζ .

1. Weights. In π rough k-means the weights are determined by ap-

plying Laplace’s Principle of Indifference. Hence, in contrast to

previous rough k-means algorithms, they are not user-defined.

So, we do not have to set them initially.

2. Number of clusters. Like in most k-means cluster algorithms (hard

k-means, fuzzy c-means etc.) the setting of the number of clus-

ters is of crucial importance and (unfortunately) still a big chal-

lenge. Due to its more recent introduction in comparison to

k-means, fuzzy c-means and others, research in this field is rel-

atively new in rough clustering. Applying and adapting some of

the well-established methods of hard k-means and fuzzy c-means

are reasonable ways to determine the number of clusters K.

3. Threshold parameter. The parameter ζ determines the size of the

boundaries. For ζ → 1 rough k-means convergence towards hard-

means, i.e., the boundaries become empty. For increasing ζ the

number of boundary objects also increases. In practice, threshold

parameters in the range of approximately 1.2 ≤ ζ ≤ 1.8 often de-

liver promising results. In some applications it has been observed

3 This step is virtually identical to hard k-means with the only difference that we

need to define the approximation an object is assigned to (→upper approximation)

instead of the assignment to ‘just’ a cluster as in hard k-means.
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