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a b s t r a c t

We consider the problem of feature selection for unsupervised learning and develop a new algorithm capable

of identifying informative features supporting complex structures embedded in a high-dimensional space.

The development of the algorithm is inspired by human learning in detecting complex data structures. We

formulate it as an optimization problem with a well-defined objective function, and solve the problem by

using an iterative approach. The algorithm can be easily implemented and is computationally very efficient.

We use gap statistics to estimate the parameters so that the proposed method is completely parameter-free.

We also develop a scheme based on permutation tests to estimate the statistical significance of the presence

of a data structure. We demonstrate the effectiveness and versatility of the algorithm by comparing it with

seven existing methods on a set of synthetic datasets with a wide variety of structures and cancer microarray

gene expression datasets.

© 2014 Elsevier B.V. All rights reserved.

1. Background

The problem of unsupervised learning is that of trying to iden-

tify hidden structures in data. Due to the lack of label information, it

is generally considered much more difficult than supervised learn-

ing. In applications involving high-dimensional data, the task be-

comes even more challenging since meaningful structures can be

completely obscured by a large number of irrelevant features. A com-

monly used practice to alleviate the problem is to perform feature

selection to remove irrelevant features to facilitate downstream anal-

yses. In addition to defying the curse of dimensionality, eliminating

irrelevant features can significantly reduce computational complex-

ity and the cost of collecting irrelevant features. In some cases, it can

also provide significant insights into the nature of the problems under

investigation.

In processing high-dimensional data (e.g., biological data), unsu-

pervised learning is commonly used for exploratory purposes. Before

learning, we may only have limited knowledge on how data is dis-

tributed. It can be grouped into multiple but unknown numbers of

clusters with arbitrary shapes, reside on multiple low-dimensional

manifolds, encompass mixed data structures (e.g., clusters and man-

ifolds), or may contain no structure at all (see Fig. 1). Our goal is to
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develop a generic feature selection algorithm capable of (1) identify-

ing features supporting intrinsic geometry of high-dimensional data

without explicitly assuming the form of data structures, and (2) pro-

viding us with statistics to indicate the absence of data structures if

data does not contain any meaningful structure.

To the best of our knowledge, there is currently no effective

method that can achieve the two goals. This paper presents a sim-

ple method that generally meets the above two requirements and

addresses some of the limitations of existing methods.

1.1. Literature review

Feature selection for unsupervised learning is generally consid-

ered a much more difficult problem than that for supervised learn-

ing, due to the lack of label information that one can use to guide

the selection of relevant features. Existing algorithms can be cate-

gorized as filter, wrapper or embedded methods. Filter methods are

independent of learning algorithms and select useful features based

on some statistical properties of data. Laplacian score [10] and SPEC

[26] are two representative filter methods. Laplacian score weighs

each feature according to its consistency with a Gaussian Laplacian

matrix, and SPEC is a unified feature selection method for both su-

pervised and unsupervised learning based on spectral graph the-

ory. The two methods work well for low-dimensional data or data

with a high signal-to-noise ratio (i.e., local structures are well pre-

served in the original space). However, when the number of irrelevant
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(a) three clusters (b) two moons (c) spiral

(d) tree (e) noise

Fig. 1. Simulated datasets with a wide variety of data structures: (a) three clusters

with regular shapes, (b) two moons with irregular shapes, (c) two twisted spirals, (d)

tree, and (e) Gaussian noise. The shaded areas are the areas covered by the data.

features becomes excessively large, the assumption adopted by the

two methods becomes invalid and both can perform poorly. In con-

trast to filter methods, a wrapper or embedded method uses the ac-

curacy of a learning algorithm as a criterion to select useful features

(see pioneering work by [7]). Since it is difficult to mathematically de-

scribe a complex data structure (e.g., manifolds), a clustering method

is commonly used as the learning algorithm (e.g., MCFS [3], NDFS [13],

RUFS [15], CGSSL [12] and sparse K-means [23]). However, as noted

above, unsupervised learning is not merely limited to cluster analysis,

and even if the clustering assumption holds, many methods require

users to specify the number of clusters to be detected, which is gener-

ally unknown in advance in an exploratory data analysis. Moreover,

the accuracy of a wrapper or embedded method to a large extent

depends on the performance of a learning algorithm. For example,

sparse K-means uses K-means as a base learner. It is well-known that

K-means is prone to local minima, and consequently sparse K-means

can perform poorly with the presence of copious irrelevant features.

2. Method

2.1. Motivation

Our goal is to develop a generic algorithm to identify rele-

vant features supporting complex data structures hidden in a high-

dimensional space. The essence is to define a criterion to quantify the

presence of a data structure that can be easily optimized by using

optimization techniques. Fig. 1 presents four toy examples of interest

and Gaussian noise in a two-dimensional space. From the perspective

of human learning, we say that the features in the first four examples

provide more information than those in the last one. Without us-

ing a mathematical formulation to give a precise description of data,

which is sometimes difficult or even impossible, a simple criterion

we may use to quickly reach the above conclusion is that the areas

of the blank space, not covered by data, in the first four subfigures

are much larger than that in the noise case (since the data in the first

four cases is tightly grouped). Then, a plausible approach to select-

ing informative features is to find a subspace where the areas of the

blank space, or equivalently the difference between the total volume

of the space spanned by data and the sum of the data volumes of

clusters or those covered by manifolds (i.e., the shaded areas in the

figures), is maximized. The problem now becomes how to define data

volumes. For ease of presentation, we focus on clustering problems at

the moment, but we will shortly see that our arguments hold for data

with complex structures. Before learning, we do not know which data

points belong to the same cluster. However, if data points are tightly

grouped into clusters, the sum of the distances between data points

and their nearest neighbors is small. Note that we herein do not re-

quire prior knowledge of the number of clusters and their shapes,

and this idea works for other data structures (e.g., manifold) due to

the chaining effect. However, finding a subspace where data groups

tightly may lead to a trivial solution (all points would be collapsed into

only one point). We also want the subspace spanned by data to be as

large as possible. A natural idea is to maximize the average distance

between data points and their mean vector. In a high-dimensional

space, however, due to a phenomenon called distance concentration

[17], samples tend to be closer to their center than to their nearest

neighbors. This is an interesting but counter-intuitive phenomenon,

manifesting the difficulty of high-dimensional data analysis due to

the curse of dimensionality. To overcome the distance–concentration

effect, we consider finding a subspace where the sum of the average

distance of each sample to other samples is maximized. This can be

understood as follows: if the territory of a country is large, the average

travel distance from any city to all the other cities is large.

In the subsequent sections, we demonstrate how to formulate the

problem of feature selection for unsupervised learning as an opti-

mization problem and solve it using an iterative method. The pro-

posed method is very simple but performs exceptionally well on a

wide variety of complex data. Moreover, it does not require users

to specify any parameter and the form of the structure one tries to

detect.

2.2. Algorithm

Let D = {xn}N
n=1 ⊂ RJ be a training dataset. We seek to find a

weighted subspace parameterized by w where the volume of the

space spanned by the data is maximized and meanwhile the data is

tightly grouped:

max
w

1

N

N∑
n,i=1

d(xn, xi|w)−
N∑

n=1

d(xn, NN(xn)|w),

s.t. ‖w‖2
2 ≤ 1, w ≥ 0 , (1)

where w is a non-negative feature weight vector, the magnitude of

each component of which indicates the importance of the correspond-

ing feature, and NN(xn) is the nearest neighbor of xn. The constraint

‖w‖2
2 ≤ 1 prevents the objective function from increasing without an

upper bound. d(xn, xi|w) measures the distance between xn and xi

with respect to w. For numerical convenience, we use the block dis-

tance, which is also used in RELIEF [11] and LOGO algorithms [20] for

feature selection in a supervised-learning setting. The above objec-

tive function has a close connection with that of K-means clustering,

which is discussed in Section 2.5.

Since the nearest neighbor operator does not have an explicit form,

it is difficult to directly solve (1) . To address the issue, we introduce

a binary vector pn ∈ {0, 1}N−1 for each point xn. Computation of the

distance between xn to its nearest neighbor can be formulated as an

optimization problem

d(xn, NN(xn)|w) = min
pn

∑
i∈Mn

pnid(xn, xi|w),

s.t.
∑

i∈Mn

pni = 1, pn ∈ {0, 1}N−1,

where Mn = {i : 1 ≤ i ≤ N, i �= n}. Let P = {pn}N
n=1. Eq. (1) can then

be transformed into the following optimization problem

max
w,P

1

N

N∑
n,i=1

d(xn, xi|w)−
N∑

n=1

∑
i∈Mn

pnid(xn, xi|w)

s.t. ‖w‖2
2 ≤ 1, w ≥ 0,

∑
i∈Mn

pni = 1, pn ∈ {0, 1}N−1, n = 1, . . . , N,

(2)
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