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a  b  s  t  r  a  c  t

The  rubber  friction  coefficient,  and  the contact  area  during  stationary  sliding  is  calculated,  for  the contact
of a polished  rubber  block  and a concrete  surface,  when  both  surfaces  are  rough.  The  calculation  is  based
on an  extended  version  of  Persson’s  contact  mechanics  theory.  Compared  to only  the substrate  being
rough,  when  both  of the  surfaces  are  rough  but their  cross  correlation  is  zero,  the  friction  coefficient  is
larger.  Introducing  a positive  correlation  decreases  the  friction  coefficient,  while  introducing  a negative
correlation  increases  the  friction  coefficient.

To support  these  theoretical  arguments,  some  experiments  have  been  performed.  We  have  produced
roughness  on  the  rubber  surface,  using  abrasive  paper,  and measured  the  surface  topographies  for  the
concrete  and  the polished  rubber  surfaces.  The  auto  spectral  density  functions  for  the  both  surfaces  have
been  calculated,  and the  rubber  viscoelastic  modulus  mastercurve  has  been  obtained.  We  have  measured
the  rubber  friction  at different  sliding  velocities,  when  the rubber  surfaces  are  rough  and  smooth,  and
compared  it  to  the  theoretical  results.  It  is  seen  that  when  the  rubber  surface  is  rough,  the  rubber  friction
coefficient  is  larger  compared  to the  case  the rubber  surface  is smooth.  The  theoretical  results  are  in good
agreement  with  experimental  observation.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The sliding friction between an elastic block and a hard solid
substrate is important in many practical situations [1–12]. Among
them are the friction between a rubber tire and the road, and the
friction between the rubber blades of wipers and the wind screen.
It is also important in cosmetic industry.

The rubber friction has several different contributions described
as the hysteretic, adhesion, and wear components [3,4,6]. The hys-
teretic component originates from the damping of the oscillating
forces experienced by the rubber. The adhesion shows itself when
the surfaces are very clean and the speeds are small, less than
10−8 (m/s) [7]. So in almost all practical cases the internal (hys-
teretic) friction is the dominant component. For this reason the
adhesion component is not included in the model which will be
presented here. When the rubber surface moves on the substrate,
small rubber particles are removed from the rubber surface, and
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the energy corresponding to the propagation of cracks in the rub-
ber surface has a contribution to friction. This is called the wear
process.

The hysteretic contribution to the rubber friction is calculated
by Persson’s theory [8–11]. In many studies, the elastic body
is assumed to be smooth. However, surfaces are in general not
smooth. Here the hysteretic component of the friction between two
surfaces is studied, one of which is a rubber block and the other a
hard substrate, when both surfaces are rough and self affine. This
is done using an extension of Persson’s model [13].

The paper’s scheme is the following. Section 2 is a review of
Person’s model of the hysteretic friction. In Section 3, an extended
version this model is used to calculate the hysteretic friction, when
both contacting surfaces are randomly rough. In Section 4, the
characteristics of the rubber and concrete surfaces are presented,
which are obtained from the measurements. Section 5 presents
the numerical results for a polished rubber block and concrete
surface. Section 6 describes the tribometer machine which has
been used to measure the rubber friction as a function of the
sliding speed and the temperature, and presents the experimen-
tal results and a comparison with the numerical obtained from
theoretical considerations. Section 7 is devoted to the concluding
remarks.
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2. Persson contact theory on rubber friction

The hysteretic friction model developed by Persson [8] is based
on the energy dissipation �E. As the rubber slides on a hard rough
surface, oscillatory forced are experienced by it, which cause energy
being dissipated in rubber. This corresponds to the nominal fric-
tional stress �f experienced by rubber. The calculation is based on
an integral of contributions due to different wavelengths (wave
numbers). In [8], equations have been derived which describe the
friction on a rubber block which is pressed on a rough surfaces. The
frictional stress �f is equal to � �0, where �0 is the normal stress.
One has

� ≈ 1
2

∫ q1

q0

dq q3 C(q) P(q)

∫ 2 �

0

d� cos � Im
[

E(−q u cos �)
�0 (1 − �2)

]
. (1)

where E is the complex viscoelastic modulus of the rubber block
that we have studied it in Section 5 and C(q) is the auto-spectral
density function of the hard randomly rough surface. Experiments
have shown that a typical road surface [14] and a polished surface
by an abrasive paper (polished styrene butadiene rubber (SB)) [15]
can be approximated by self-affine fractals. The frequency is written
in terms of the slip velocity

u

�
= u q cos �, (2)

where � is the angle between the sliding direction and the wave
vector q. �, the Poisson’s ratio of the rubber block, is assumed to
be independent of frequency and equal to 0.5. The integration in
(1) is performed over the wave vectors. Under the nominal stress
�0, the surface asperities do not, in general, fully penetrate inside
the rubber block and the contact between the substrate and the
rubber block is not full. Hence the auto-spectral density function
does not contribute in full to the hysteresis friction. This aspect
is taken into account in (1) through the factor P(q), which is the
normalized contact area:

P(q) = A

A0
= 2

�

∫ ∞

0

dx
sin x

x
exp[−x2 G(q)] = erf

[
1

2
√

G(q)

]
. (3)

G(q) = 1
8

∫ q

q0

dq′ q′3 C(q′)
∫ 2 �

0

d�
∣∣∣E(−q′ u cos �)

�0 (1 − �2)

∣∣∣2

. (4)

The auto-spectral density function for self-affine fractals can
then be described by:

C(q) ≈ H

2 �

(
h0

q0

)2 (
q

q0

)−2 (H+1)
. (5)

〈h2〉 = (h0)2

2
. (6)

H and 〈h2〉 are the Hurst exponent and the root-mean-square rough-
ness of the substrate, respectively.

3. Theory for hysteretic contribution of friction when both
surfaces are rough

The frictional shear stress for rubber sliding on a hard substrate
is [8]

�f = Re

{
2 �2

A0 u

∫ q1

q0

d2q (−i q · u) [Mz z(−q, −q · u)]−1 〈hz(q) hz(−q)〉
}

, (7)

[Mzz(q, w)]−1 = −q E(w)
2 (1 − �2)

,  (8)

where u is the surface velocity (relative to the substrate), and hz(q)
is the Fourier transform of the normal displacement of the rub-
ber surface. Now consider that a randomly rough viscoelastic solid

slide on a randomly rough hard substrate. Eq. (7) holds, but here
for full contact the displacement of rubber is the difference of the
fluctuations of the rubber and the substrate:

hz(q) = h2(q) − h1(q). (9)

An explanation is in order here. It is assumed that parts of the
rubber and the substrate which are in contact, both change with
time. That’s the case when a rubber wheel is rolling on the sub-
strate, or when a rubber piece is rotating on a substrate around a
rotation axis normal to the substrate. In such cases, the rubber and
the substrate behave symmetrical. Otherwise, if a finite block of
rubber is sliding on a larger substrate, with the contact part of the
rubber being constant, the contact part of the substrate changes
and that of the rubber does not change. This is not the case studied
here.

Substituting (8) and (9) in (7),

�f = 2 �2

A0

∫ q1

q0

d2q q2 cos � 〈(h2(q) − h1(q)) (h2(−q) − h1(−q))〉

× Im
[

E(−q u cos �)
(1 − �2)

]
. (10)

The spectral density function is [13]

Ci j(q) = (2 �)2

A0
〈hi(q) hj(−q)〉, (11)

where A0 is the surface area and i = 1, 2 [16,17]. It is assumed that
the joint distribution function of the heights is Gaussian, and the
surfaces are homogeneous and isotropic. So,

〈hi(q) hi(−q)〉 = 〈|hi(q)|2〉 = A0 Ci(q)

(2 �)2
, (12)

where Ci is real function and depends on only q = |q|. The coherence
function 	1 2 is defined through

〈h1(q) h2(−q)〉 = 	1 2(q)
√

〈|h1(q)|2〉 〈|h2(q)|2〉, (13)

	12 is in general complex, with modulus not exceeding one [18,19].
For homogeneous and isotropic surfaces, 	1 2 is real, depends on
only q, and is equal to 	2 1. So the subscripts are dropped. 	 = 0,
	 = 1, and 	 =−1 are special cases, corresponding to uncorrelated
surfaces, completely positive correlated surfaces, and completely
negative correlated surfaces. Fig. 1 shows examples of completely
correlated surfaces.

Substituting (11) and (12) in (10), results in

�f = 1
2

∫ q1

q0

dq q3 [C1(q) + C2(q) − 2 	
√

C1(q) C2(q)] P(q)

×
∫ 2 �

0

d� cos � Im
[

E(−q u cos �)
(1 − �2)

]
. (14)

So the friction coefficient � would be,

� = 1
2

∫ q1

q0

dq q3 [C1(q) + C2(q) − 2 	
√

C1(q) C2(q)] P(q)

×
∫ 2 �

0

d� cos � Im
[

E(−q u cos �)
�0 (1 − �2)

]
. (15)

As stated earlier, under the nominal stress �0, the surface asperities
do not fully penetrate inside the rubber block and only a partial con-
tact between the hard surface and the rubber block can be achieved.
The introduction of the normalized contact area P(q) in (14) and (15)
takes this into account. Roughening the surface of the viscoelastic
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