Pattern Recognition Letters 49 (2014) 85-91

Pattern Recognition
Letters

Contents lists available at ScienceDirect

Pattern Recognition Letters

#7
R {\

journal homepage: www.elsevier.com/locate/patrec ST

Kernel Reference Discriminant Analysis ™

@ CrossMark

Alexandros losifidis *, Anastastios Tefas, loannis Pitas

Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece

ARTICLE INFO ABSTRACT

Article history:
Received 20 December 2013
Available online 9 July 2014

Keywords:

Kernel Discriminant Analysis
Kernel Spectral Regression
Optimized class representation

Linear Discriminant Analysis (LDA) and its nonlinear version Kernel Discriminant Analysis (KDA) are
well-known and widely used techniques for supervised feature extraction and dimensionality reduction.
They determine an optimal discriminant space for (non)linear data projection based on certain assump-
tions, e.g. on using normal distributions (either on the input or in the kernel space) for each class and
employing class representation by the corresponding class mean vectors. However, there might be other
vectors that can be used for classes representation, in order to increase class discrimination in the
resulted feature space. In this paper, we propose an optimization scheme aiming at the optimal class
representation, in terms of Fisher ratio maximization, for nonlinear data projection. Compared to the

standard approach, the proposed optimization scheme increases class discrimination in the reduced-
dimensionality feature space and achieves higher classification rates in publicly available data sets.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Linear Discriminant Analysis (LDA) is a well-known algorithm
for supervised feature extraction and dimensionality reduction. It
aims at the determination of an optimal subspace for linear data
projection, in which the classes are better discriminated. Non-
linear extensions [12,25,24,3,22,16,5] exploit data representations
in arbitrary-dimensional feature spaces (determined by applying a
non-linear data mapping process). After the determination of the
data representation in the arbitrary-dimensional feature space, a
linear projection is calculated, which corresponds to a non-linear
projection of the original data. In both cases, the adopted criterion
is the ratio of the between-class scatter to the within-class scatter
in the reduced-dimensionality feature space, which is usually
referred to as Fisher ratio.

LDA optimality is based on the assumptions of: (a) normal class
distributions with the same covariance structure and (b) class rep-
resentation by the corresponding class mean vector. Under these
assumptions, the maximization of the Fisher ratio leads to maximal
class discrimination in the reduced-dimensionality feature space.
Although relying on rather strong assumptions, both LDA and its
kernel extensions have proven very powerful and they have been
widely used in many applications, including face recognition/veri-
fication [28,27,7,14,30], human action recognition [8,9], person
identification [21,10,29] and speech recognition [4].
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By observing that the between-class and within-class scatter
matrices employed for the determination of the optimal data
projection matrix in LDA can be considered to be functions of the
class representation, it has been recently shown that, when the
two aforementioned assumptions are not met, the adoption of
class representations different from the class mean vectors leads
to increased class discrimination in the reduced-dimensionality
feature space [11]. In addition, it has been shown that, given a data
projection matrix determined by maximizing the criterion adopted
in LDA, the optimal class representations can be analytically
calculated. In order to determine both the optimal data projection
matrix and the optimal class representations, an iterative optimi-
zation scheme has been proposed [11].

In this paper, we extend the method in [11] in order to operate
in arbitrary-dimensional feature spaces for non-linear supervised
feature extraction and data projection. We formulate an optimiza-
tion problem that exploits a non-linear data mapping process to an
arbitrary-dimensional feature space, in which optimized class
representations are determined. By employing such optimized
class representations, a linear data projection from the arbitrary-
dimensional feature space to a reduced-dimensionality discrimi-
nant feature space is subsequently calculated. We show that, the
determination of the optimal class representation in the arbi-
trary-dimensional feature space has a closed form solution, similar
to the linear case. For the determination of the optimal data projec-
tion exploiting the optimal class representations, we introduce the
proposed criterion to the Spectral Regression framework [3] and
we describe an efficient algorithm to this end. Finally, we combine
the two aforementioned optimization processes and propose an
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iterative optimization scheme for the determination of both the
optimal class representation and the optimal (non-linear) data
projection. The proposed criterion is evaluated on standard classi-
fication problems, as well as on human action and face recognition
problems. It is shown that, by exploiting optimized class represen-
tations, increased class discrimination can be achieved in the
decision space leading to enhanced classification performance.

The rest of the paper is structured as follows. We briefly
describe the non-linear version of LDA, i.e. the Kernel Discriminant
Analysis (KDA), in Section 2. The proposed Kernel Reference
Discriminant Analysis (KRDA) algorithm is described in detail in
Section 3. Experimental results comparing its performance with
the standard approach are provided in Section 4. Finally, conclu-
sions are drawn in Section 5.

2. Kernel Discriminant Analysis

Let us denote by x; ¢ R°, i=1,...,C, j=1,...,N; a set of D-
dimensional data, each belonging to one of C classes. The number
of samples belonging to class i is equal to N;. In order to determine
a nonlinear data projection, the input space R” is mapped to an
arbitrary-dimensional feature space F (usually having the proper-
ties of Hilbert spaces) [19,2,1] by employing a function
é() : X5 € RP — ¢(xy) € F determining a nonlinear mapping from
the input space RP to the arbitrary-dimensional feature space F.
¢(-) can either be chosen based on the properties of the problem
at hand, e.g. for histogram-based data representations the RBF-y?
kernel has been proven to be the state-of-the-art choice [31], or
can be determined by applying kernel selection methods. In the
second case, a linear combination of a priori chosen kernel func-
tions is usually learned based on optimization, e.g. as in [13]. In
F, we would like to determine a data projection matrix P that
can be used to map a given sample ¢(X;) to a low-dimensional fea-
ture space R? of increased class discrimination power:

Vi = PT¢(xij)7
This can be achieved by maximizing the following criterion:

trace(P'S,P)
trace(P'S,,P)’

y; € R% (1)

Toa(P) = (2)

where the matrices Sy, S,, are given by:

C

Sp = > _Ni((mi) — (m)) (p(my) — p(m))", 3)

C
Sw =D ($(xy) — p(m)) (4(xy) — p(my))". (4)

In (3) and (4) ¢(m;) is the mean vector of class i in F, i.e.
¢(m,) ,@ ol ]d;(xu) ¢(m) is the mean vector of the entire set in

F, ie. d)( )= NZI 121 ‘L #(X;), where N= Zf,lN,«j. The direct
maximization of (2) is intractable, since Sp, S,, are matrices with
arbitrary (possibly infinite) dimensions. In practice we overcome
this problem by exploiting the so-called kernel trick [19,2,1]. That
is, the maximization of (2), as well as the multiplication in (1), are
inherently computed by using dot-products in F.

The maximization of (2) with respect to P leads to the determi-
nation of a data projection that can be used to map the original
data to a reduced-dimensionality feature space where the data dis-
persion from the corresponding class mean vectors is minimized
and the dispersion of class mean vectors from the total mean is
maximized. In the cases where the classes (when represented in
F) follow normal distributions with the same covariance structure,
by maximizing (2) maximal class discrimination can be achieved.

However, this is a strong assumption which may not be met in
many real problems. As has been shown in [11], the determination
of optimized class representations enhances class discrimination in
the projection space in the cases where the assumptions of LDA are
not met. In the following, we describe an iterative optimization
scheme that can be exploited in order to determine both the opti-
mal class representations in F and the optimal projection for non-
linear data mapping exploiting such optimized representations.

3. Kernel Reference Discriminant Analysis

In this Section we describe in detail the proposed Kernel Refer-
ence Discriminant Analysis algorithm. Let us denote by ®; a matrix
containing the samples belonging to class i (represented in F), i.e.
D; = [p(Xi1),...,¢(Xin,)]. By using @;, i =1,...,C we can construct
the matrix ® = [®@y,...,®| containing the representations of the
entire data set in F. The so-called kernel matrix K ¢ RV is given
by K = ®"®. Let us denote by K; ¢ RVN a matrix containing the
columns of K corresponding to the samples belonging to class i.
That is, K = [K, ..., Kc], where K; = ®"®;.

In KRDA, each class i is represented by a vector ¢(u,). ¢(g;) is
not restricted to be the class mean in F, but can be any vector
enhancing class discrimination in the projection space R?. In order
to determine both the optimal data projection matrix P and the
optimal class representations ¢(u;), we propose to maximize the
following criterion with respect to both P and pu;:

trace(P'S, (P)

trace(P"S,,(u)P)’ )

Tkroa(P, ;) =

where the matrices Sy(#;), Sp(y;) are given by:

~ C T
Sv(p;) = ZNx‘ (o() — p(m)) (p(p) — (M), (6)
c N .
(i) = DD (d(Xy) — () (6(Xy) — p(my))"- (7)

i=1 j=1

S, describes the class dispersion with respect to ¢(u;) in F. That is,
the maximization of (5) leads to the determination of a data projec-
tion that can be used to map the original data to a reduced-dimen-
sionality feature space RY, where the data dispersion from the
corresponding class reference vector ji; = P'¢(u;) is minimized,
while the dispersion of the class reference vectors from the total
mean is maximized. In the following, we assume that the data set
is centered in F.'

3.1. Calculation of P

In order to determine the optimal data projection matrix P we
work as follows. Let us denote by p an eigenvector of the problem
§b(yi)p = )Sw(y,.)p with eigenvalue /. p can be expressed as a linear
combination of the data (representated in F) [19,2,1],
p= Zlez;":"la,-jqﬁ(x,-j) = ®a, where acR". In addition, we can
express ¢(u;) as a linear combination of the samples belonging to
class i, i.e. () =3} bj(x;) = ®;b;, where b; € RY. As it will
be described in Appendix A, by setting Ka = u, the aforementioned
eigenproblem can be transformed to the following equivalent
eigenproblem:

B(b))u = /W(b))u. (8)

! This can always be done by using ¢(x; Xj) = (X)) — ¢(m), leading to a centered
version of the kernel matrix given by K = 1K1 — 11K + + 1K1, where 1 ¢ RN is a
matrix of ones.
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