
A new extracting algorithm of k nearest neighbors searching for point
clouds q

Zisheng Li a,b, Guofu Ding a,⇑, Rong Li a, Shengfeng Qin c

a Institute of Advanced Design & Manufacturing, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
b School of Manufacturing Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
c Department of Design, Northumbria University, City Campus East Building 2, Newcastle upon Tyne NE1 2 SW, UK

a r t i c l e i n f o

Article history:
Received 5 October 2013
Available online 22 July 2014

Keywords:
kNN searching algorithm
Extracting algorithm
Distance comparison using vector inner
product
Point clouds

a b s t r a c t

k Nearest neighbors (kNN) searching algorithm is widely used for finding k nearest neighbors for each
point in a point cloud model for noise removal and surface curvature computation. When the number
of points and their density in a point cloud model increase significantly, the efficiency of a kNN searching
algorithm becomes critical to various applications, thus, a better kNN approach is needed. In order to
improve the efficiency of a kNN searching algorithm, in this paper, a new strategy and the corresponding
algorithm are developed for reducing the amount of target points in a given data set by extracting nearest
neighbors before the search begins. The nearest neighbors of a reverse nearest neighborhood are pro-
posed to use in extracting nearest points of a query point, avoiding repetitive Euclidean distance calcu-
lation in an extracting process for saving time and memories. For any point in the model, its initial
nearest neighbors can be extracted from its reverse neighborhood using an inner product of two related
vectors other than direct Euclidean distance calculations and comparisons. The initial neighbors can be its
full or partial set of the all nearest neighbors. If it is a partial set, the rest can be obtained by using other
fast searching algorithms, which can be integrated with the proposed approach. Experimental results
show that integrating extracting algorithm proposed in this paper with other excellent algorithms pro-
vides a better performance by comparing to their performances alone.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

A variety of kNN searching algorithms are widely used in
point cloud modeling [34], spatial database retrieval [10,12] and
data mining [27], etc. A kNN searching problem can be described
as: given an existing data set S with n points, for a query point
p0 2 S, finding a subset S0 with k points (p0 is not included) where
S0 � S and k < n such that for any point p1 2 S0 and
p2 2 S� S0; distðp0; p1Þ 6 distðp0; p2Þ , here distðpi; pjÞ representing
the distance between pi and pj.

Distance metric can have different forms depending on its
applications. In point cloud modeling, Euclidean distance is usually
used in kNN search for estimating the geometric properties such as
the normal and curvature of a point. In order to search the nearest
neighbors of a query point, a kNN searching algorithm needs to (1)
calculate distances between the query point and any others in the

data set, (2) sort these points by the distance in ascending order,
(3) choose the most closest k points. When the query point is chan-
ged, the above procedure will be repeated, thus all distances com-
puted before will be used only once and need to be updated every
time. This is also called brute force approach [26].

Many scholars have studied various kNN algorithms in Rd

(d P 2) space for extensive applications and proposed a few
efficient searching algorithms. Those algorithms fall into four
categories broadly: multi-step progressive algorithm, parallel algo-
rithm, data reorganization algorithm (DRA) and spatial partition
algorithm (SPA). The prominent searching algorithms are DRA
and SPA.

DRA involves a tree-like data structure, divides a whole data set
into multi-level subspaces which are applied to build tree nodes
depending on splitting rules recursively. The data structure used
in these algorithms is a binary or multi children tree whose nodes
differ from each other due to splitting rules; therefore splitting
rules determine searching efficiency among these algorithms. For
example, KD� tree [6] uses tree nodes to store space range to par-
tition data space into clipped super planes for reducing searching

http://dx.doi.org/10.1016/j.patrec.2014.07.003
0167-8655/� 2014 Elsevier B.V. All rights reserved.

q This paper has been recommended for acceptance by D. Coeurjolly.
⇑ Corresponding author. Tel./fax: +86 028 8760 1643.

E-mail address: dingguofu@163.com (G. Ding).

Pattern Recognition Letters 49 (2014) 162–170

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier .com/locate /patrec

http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2014.07.003&domain=pdf
http://dx.doi.org/10.1016/j.patrec.2014.07.003
mailto:dingguofu@163.com
http://dx.doi.org/10.1016/j.patrec.2014.07.003
http://www.sciencedirect.com/science/journal/01678655
http://www.elsevier.com/locate/patrec


scope. Cell� tree [9] refines the distance bound between cells, and
searches nearest neighbors by partitioning the data space into
equal-size cubic cells on which cell-tree is built. VP � tree [32]
builds a binary tree by dividing the data space using large spherical
with distance from the selected vantage point instead of cubic cells
employed in Cell� tree. BBD� tree [4] builds a tree differing from
KD� tree and Cell� tree in its tree nodes involving not only points
but also the set theoretic difference. PAT [11, 21] builds an efficient
search tree by using principal component analysis (PCA) and con-
ducts its search by using partial distance search (PDS) while OST
[19] builds a tree using orthogonal base vectors and elimination
inequality rules. Quad� tree for disk accessing and R� tree for
searching [26] with locality are efficient as well as C � tree [33].
Algorithms in this category partition space into small regions to
build a tree, each node having nearly the same number (Nc) of
points, and use bounding comparison approaches to remove child
nodes that cannot be included in candidate set in the searching
process. We have tested that Nc is a key parameter for searching
nearest neighbors. If Nc is small, this algorithm can degenerate into
a brute force approach, while if it is large, its answer set can be dis-
ordered seriously, However, there is no method to calculate the
proper Nc yet.

SPA [20,23,24,30,31,35] divides the bounding box of a data set
into cells, its splitting procedures are similar to that of DRA, but
it does not reorganize points into a tree and just records which cell
contains which points. The algorithm proposed in [23] has been
applied to two-dimensional data sets while those in
[20,24,30,31,35] are for various three-dimensional point clouds.
When a search begins, SPA first locates the cell with a query point
in and then calculates distances of every point in that cell to the
query point and sorts them in increasing order. If there are enough
points in this cell, and if the kth shortest distance is smaller than
the distance between the query point and the closet wall of the
cell, the search stops. Otherwise, it continues with one or more
cells depending on the expanding rules to repeat the search proce-
dure. SPA is an excellent searching algorithm with satisfactory
accuracy and acceptable speed because it utilizes neighborhoods
of a point to speed up a search process by splitting a whole data
space into cells and reducing the searching scope in turn. However,
distances between a query point and any other points still need to
be calculated again every time, thus, it can still be regarded as a
brute force algorithm in this sense.

Neighbor finding technology performs wasteful repeated work
[22] as points in proximity share neighbors [26]. To avoid using a
brute force method in neighborhood, calls for novel methods to
extract nearest neighbors directly. Lazy search algorithm proposed
by Song [28] can extract partial nearest neighbors from the latest
query point for a current query point. But it is used for a moving
point. There is a key difference between the kNN searching prob-
lem for a point cloud and that of moving point searching problem.
For the latter, the query point is moving and it is not an element of
the data set. We have tested that the criterion proposed in [28]
leads to serious inaccuracies when it is applied to extract nearest
neighbors for point cloud models.

The motivation of this paper is to reduce the number of target
searching points differing from the prominent algorithms which
aim to reduce searching scope. In our proposed approach, in order
to find kNN for a query point P, if having extracted k1 points from a
reverse nearest neighborhood [8] of P, we only need to search
k� k1 nearest neighbors for P further in the subsequent searching
process. This new algorithm extracts nearest neighbors (EkNN)
directly rather than applying a brute force method in neighbor-
hood. In addition, inner products of related vectors are used to sort
out the nearest neighbors avoiding the use of direct distance com-
parison and saving both time and memories. The technical contri-
bution of our work can be summarized as follows:

� An accurate criterion for extracting nearest neighbors from the
reverse neighborhood of a point in query is proposed, although
all nearest neighbors of a query point can be extracted from its
reverse neighborhood recursively, we only do it once through
each neighbor for better performance.
� An alternative method for comparing Euclidean distances is

presented. This approach utilizes the inner product of two vec-
tors among the query point and two points in checking to sort
out their orders.
� Finally, the proposed method can be integrated with any other

searching algorithms. We tested our method with SPA and DRA,
and used a linked list to manage and save memories.

The rest of the paper is organized as follows. Section 2 defines
the related concepts of kNN searching and our new approach. Sec-
tion 3 gives the details of our novel algorithm for extracting near-
est neighbors. Section 4 presents the results of experiments and
the conclusions are finally drawn in Section 5.

2. A new approach for kNN searching

Surface reconstruction has been a central problem in reverse
engineering [3,5,15]. Technological advances in laser scanning
enable the creation of large 3D point cloud data sets with high
density and accuracy and also present a real application challenge
in generating product models through reverse engineering
approaches accurately and rapidly. There is a wide diversity of
reverse engineering methods for surface modeling from point
clouds [29].The analytical functions of point clouds are unknown,
so all geometric properties such as normals can only be estimated
with a variety of methods such as regression [15], delaunay [2],
statistic [16], one-ring [13] and hough transformation [7]. For
instance, estimating normals needs to construct the best local tan-
gent plane for each point and kNN of each point must have been
searched before constructing the tangent plane. Thus, kNN search-
ing plays an important role in point clouds application, and reverse
engineering in turn.

Although there are a lot of kNN searching algorithms as stated
in Section 1, they are not all for point clouds applications such as
reverse engineering from a big data set with high density, while
classic research in reverse engineering is much focused on surface
reconstruction, smoothing and etc., paying less attention to kNN
searching problems. Nevertheless, kNN searching algorithm is vital
to the performance of reverse engineering on a large scale point
cloud modeling with high density and accuracy, it needs further
studies.

In this paper, n denotes the number of points in a point cloud. P
is called a query point if we are going to search kNN points for P,
and kNNðPÞ is the data set that consists of k nearest points to P. If
P0 2 kNNðPÞ, then P is called a reverse nearest neighbor of P0. Reverse
nearest neighbors is abbreviated to rkNN. All rkNN points of P0

forms a set rkNNðP0Þ. Euclidean distance between Pi and Pj denoted
by distðPi; PjÞ.

If P0 2 kNNðPÞ is the next query point, for any Q 2 kNNðPÞ ðQ – PÞ,
there are two cases that Q 2 kNNðP0Þ or Q R kNNðP0Þ . If we know
that Q 2 kNNðP0Þ before a search begins, then only k� 1 points are
needed to be found in the subsequent search process(the computa-
tion time in the searching process reduces when k decreases): (1)
In order to judge whether Q 2 kNNðP0Þ or not, we proposed a fast
extracting algorithm. By using this extracting algorithm, if
Q 2 kNNðP0Þ, we can determine the truth before the search begins.
(2) Direct distance computation and comparison will be replaced
with the inner product of two vectors formed from a query point
and other two points in indirectly distance comparison for improv-
ing its efficiency further (the proof is given in A). The latter method

Z. Li et al. / Pattern Recognition Letters 49 (2014) 162–170 163



Download English Version:

https://daneshyari.com/en/article/535347

Download Persian Version:

https://daneshyari.com/article/535347

Daneshyari.com

https://daneshyari.com/en/article/535347
https://daneshyari.com/article/535347
https://daneshyari.com

