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a b s t r a c t

The mean-shift procedure is a popular object tracking algorithm since it is fast, easy to implement and
performs well in a range of conditions. We address the problem of scale adaptation and present a novel
theoretically justified scale estimation mechanism which relies solely on the mean-shift procedure for
the Hellinger distance. We also propose two improvements of the mean-shift tracker that make the scale
estimation more robust in the presence of background clutter. The first one is a novel histogram color
weighting that exploits the object neighborhood to help discriminate the target called background ratio
weighting (BRW). We show that the BRW improves performance of MS-like tracking methods in general.
The second improvement boost the performance of the tracker with the proposed scale estimation by the
introduction of a forward–backward consistency check and by adopting regularization terms that counter
two major problems: scale expansion caused by background clutter and scale implosion on self-similar
objects. The proposed mean-shift tracker with scale selection and BRW is compared with recent state-
of-the-art algorithms on a dataset of 77 public sequences. It outperforms the reference algorithms in
average recall, processing speed and it achieves the best score for 30% of the sequences – the highest per-
centage among the reference algorithms.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The mean-shift (MS) algorithm by Fukunaga and Hostetler [4] is
a non-parametric mode-seeking method for density functions. It
was introduced to computer vision by Comaniciu et al. [3] who
proposed its use for object tracking. The MS algorithm tracks by
minimizing the distance between two probability density func-
tions (pdfs) represented by a target and target candidate histo-
grams. Since the histogram distance (or, equivalently, similarity)
does not depend on the spatial structure within the search win-
dow, the method is suitable for deformable and articulated objects.

The performance of the mean-shift algorithm suffers from the
use of a fixed size window if the scale of the target changes. When
the projection of the tracked object becomes larger, localization
becomes poor since some pixels on the object are not included in
the search window and the similarity function often has many
local maxima. If the object become smaller, the kernel window
includes background clutter which often leads to tracking failure.

The seminal paper by Comaniciu et al. [3] already considered
the problem and proposed changing the window size over multiple

runs by a constant factor (�10%). The window size maximizing the
similarity to the target histogram was chosen. This approach does
not cope well with the increase of the object size since the smaller
windows usually have higher similarity and therefore the scale is
often underestimated.

Collins [2] exploited image pyramids and used an additional
mean-shift procedure for scale selection after estimating the posi-
tion. The method works well for objects with a fixed aspect ratio,
but this often does not hold for non-rigid or a deformable objects.
Moreover, the method is significantly slower than the standard MS.

Image moments are used in [1,10] to determine the scale and
orientation of the target. The second moments are computed from
an image of weights that are proportional to the probability that a
pixel belongs to the target model. Yang et al. [13] introduced a new
similarity measure that estimates the scale by comparison of sec-
ond moments of the target model and the target candidate.

Pu and Peng [11] assume target rigidity and restrict motion to
scaling and translation. The target is first tracked using the
mean-shift both in the forward and backward direction to estimate
the translation. Scale is then estimated from feature points
matched by an M-estimator with outlier rejection. Similarly,
[8,15] rely on ’’support features’’ for scale estimation after the
mean-shift algorithm solves for position. Liang et al. [8] search
for the target boundary by correlating the image with four
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templates. Positions of the boundaries directly determine the scale
of the target. Zhao et al. [15] exploit affine structure to recover the
target relative scale from feature point correspondences between
consecutive frames.

Methods depending on feature matching are able to robustly
estimate the scale, but they cannot be seamlessly integrated to
the mean-shift framework. Moreover, estimating scale from fea-
ture correspondences takes times, requires presence of well-local-
ised features that can be detected with high repeatability, and it
has difficulties dealing with a non-rigid or a deformable object.

We present a theoretically justified scale estimation mechanism
which, unlike the method listed above, relies solely on the mean-
shift procedure for the Hellinger distance. Furthermore, we pro-
pose a formulation for background weighting that exploits the
tracked object’s neighborhood to help discriminate the object from
the background. Additionally, we present two mechanisms that
make the scale estimation more robust in the presence of back-
ground clutter and improve tracker performance to level of the
state-of-the-art. The performance is compared to state-of-the-art
algorithms on a large tracking dataset.

2. Mean-shift tracker with scale estimation

2.1. Standard kernel-based object tracking

In the standard mean-shift tracking of [3], the target is mod-
elled as an m-bin kernel-estimated histogram in a feature space
located at the origin:

q̂ ¼ q̂uf gu¼1...m

Xm

u¼1

q̂u ¼ 1: ð1Þ

A target candidate at location y in the subsequent frame is
described by its histogram

p̂ðyÞ ¼ p̂uðyÞf gu¼1...m

Xm

u¼1

p̂u ¼ 1; ð2Þ

Let xi denote pixel locations, n be the number of pixels of the target
and let fx�i gi¼1...n be the pixel locations of the target centered at the
origin. Spatially, the target covers a unit circle and an isotropic, con-
vex and monotonically decreasing kernel profile kðxÞ is used. Func-
tion b : R2 ! 1 . . . m maps the value of the pixel at location xi to the
index bðxiÞ of the corresponding bin in the feature space. The prob-
ability of the feature u 2 f1; . . . ;mg is estimated by the target histo-
gram as follows:

q̂u ¼ C
Xn

i¼1

k kx�i k
2

� �
d½bðx�i Þ � u�; ð3Þ

where d is the Kronecker delta and C is a normalization constant so
that

Pm
u¼1q̂u ¼ 1.

Let fxigi¼1...nh
be pixel locations in the current frame where the

target candidate is centered at location y and nh be the number
of pixels of the target candidate. Using the same kernel profile
kðxÞ, but with a scale parameter h, the probability of the feature
u ¼ 1 . . . m in the target candidate is

p̂uðyÞ ¼ Ch

Xnh

i¼1

k
y � xi

h

��� ���2
� �

d½bðxiÞ � u�; ð4Þ

where Ch is a normalization constant. The difference between prob-
ability distributions q̂ ¼ q̂uf gu¼1...m and p̂uðyÞf gu¼1...m is measured by
the Hellinger distance of probability measures, which is known to
be a metric:

Hðp̂ðyÞ; q̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q½p̂ðyÞ; q̂�

q
; ð5Þ

where

q½p̂ðyÞ; q̂� ¼
Xm

u¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂uðyÞq̂u

q
ð6Þ

is the Bhattacharyya coefficient of q̂ and p̂ðyÞ. Minimizing the Hel-
linger distance is equivalent to maximizing the Bhattacharyya coef-
ficient q½p̂ðyÞ; q̂�. The search for the new target location in the
current frame starts at location ŷ0 of the target in the previous
frame using gradient ascent with a step size equivalent to the
mean-shift method. The kernel is repeatedly moved from the cur-
rent location ŷ0 to the new location

ŷ1 ¼

Pnh
i¼1xiwig

ðŷ0�xiÞ
h

��� ���2
� �

Pnh
i¼1wig

ðŷ0�xiÞ
h

��� ���2
� � ; ð7Þ

where

wi ¼
Xm

u¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂u

p̂uðŷ0Þ

s
d½bðxiÞ � u� ð8Þ

and gðxÞ ¼ �k0ðxÞ is the derivative of kðxÞ, which is assumed to exist
for all x P 0, except for a finite set of points.

2.2. Scale estimation

Let us assume that the scale changes frame to frame in an iso-
tropic manner1. Let y ¼ ðy1; y2ÞT ; xi ¼ ðx1

i ; x
2
i Þ

T denote pixel locations
and N be the number of pixels in the image. A target is represented

by an ellipsoidal region
ðx�1

i
Þ2

a2 þ
ðx�2

i
Þ2

b2 < 1 in the image and an isotropic

kernel with profile kðxÞ as in [3], restricted by a condition kðxÞ ¼ 0 for
x P 1, is used. The probability of the feature u 2 f1; ::;mg is esti-
mated by the target histogram as

q̂u ¼ C
XN

i¼1

k
ðx�1i Þ

2

a2 þ ðx
�2
i Þ

2

b2

 !
d½bðx�i Þ � u�; ð9Þ

where C is a normalization constant. Let fxigi¼1...N be the pixel loca-
tions of the current frame in which the target candidate is centered
at location y. Using the same kernel profile kðxÞ, the probability of
the feature u ¼ 1 . . . m in the target candidate is given by

p̂uðy;hÞ ¼ Ch

XN

i¼1

k
ðy1 � x1

i Þ
2

a2h2 þ ðy
2 � x2

i Þ
2

b2h2

 !
d½bðxiÞ � u�; ð10Þ

where

Ch ¼
1PN

i¼1k
ðy1�x1

i
Þ2

a2h2 þ
ðy2�x2

i
Þ2

b2h2

� � : ð11Þ

The parameter h defines the scale of the target candidate and thus
the number of pixels with non-zero values of the kernel function.

For a given kernel and variable h; Ch can be approximated in
the following way: Let n1 be the number of pixels in the ellipsoidal
region of the target model, and let nh be the number of pixels in the
ellipsoidal region of the target candidate with a scale h; then
nh¼
: h2n1. Using the definition of Riemann integral we obtain:

XN

i¼1

k
ðx1

i Þ
2

a2h2 þ
ðx2

i Þ
2

b2h2

 !
pabh2

nh
�
Z Z

ðx1 Þ2

a2h2þ
ðx2Þ2

b2h2<1

n ok
ðx1Þ2

a2h2 þ
ðx2Þ2

b2h2

 !
dx1dx2

¼h2ab
Z Z

kxk<1
kðkxk2Þ:

ð12Þ

1 Generalization to the anisotropic where h ¼ ðh1
;h2Þ

T
is straightforward.
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