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a b s t r a c t

The intracranial volume (ICV) in children with premature fusion of one or more sutures in the calvaria is
of interest due to the risk of increased intracranial pressure. Challenges for automatic estimation of ICV
include holes in the skull e.g. the foramen magnum and fontanelles. In this paper, we present a fully auto-
matic 3D graph-based method for segmentation of the ICV in non-contrast CT scans. We reformulate the
ICV segmentation problem as an optimal genus 0 segmentation problem in a volumetric graph. The graph
is the result of a volumetric spherical subsampling. The equidistantly sampled data points are connected
using Delaunay tetrahedralisation creating a highly connected neighborhood. A Markov Random Field
(MRF) is constructed on the graph with probabilities learned from an Expectation Maximisation algo-
rithm matching a Mixture of Gaussians to the data. The result of the MRF segmentation is compared
to manual segmentations performed by an expert. We have achieved very high Dice scores ranging from
98.14% to 99.00%, while volume deviation from the manual segmentation ranges from 0.7% to 3.7%. The
Hausdorff distance, which shows the maximum error from automatic to manual segmentation, ranges
from 4.73 to 9.81 mm. Since this is sensitive to single error, we have also found the 95% Hausdorff dis-
tance, which ranges from 1.10 to 3.65 mm. The segmentation is very consistent with the reference and
differs only in difficult areas, where it seems that our method is much more slice-wise consistent than
a manual segmentation. The proposed method is expected to perform well for other volumetric
segmentations.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Unicoronal synostosis (UCS) is a congenital craniofacial malfor-
mation characterized by the premature fusion of one of the coronal
sutures, potentially leading to asymmetric head shape, craniofacial
growth disturbances, increased intracranial pressure and develop-
mental delays. Computed Tomography (CT) scanning is usually
performed to confirm the diagnosis and to facilitate surgical
treatment planning. The intracranial volume (ICV) in children with
premature fusion of one or more sutures in the calvaria may be-
come reduced, leading to risk of increased intracranial pressure
[1]. Challenges for automatic estimation of ICV include holes in
the skull in newborns (the fontanelles), but also holes in the cranial

base (e.g. the foramen magnum and other foramina, fissures and
synchondroses).

The main contribution of our work is a fast and fully automatic
method for segmentation and estimation of the ICV in CT scans of
children with craniosynostosis. The method is based on the con-
struction of a volumetric graph description of the skull volume.
The graph has equidistantly spaced sample point connected via
tetrahedralisation. The clamping of special nodes consistently pro-
duces graph cut segmentations of genus 0. In topology any defor-
mation of a sphere is genus 0 and the segmentation is equivalent
to an expansion of a balloon inside the intracranial volume result-
ing in one coherent volume.

Validation is carried out by comparing the automatic segmenta-
tion model to a semi-automated model. An example a segmenta-
tion of our proposed method is shown in Fig. 1(a) and example
of the sample scheme with neighborhood connectivity is shown
in Fig. 1(b).
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2. Brief review of the previous research

Current work on automatic ICV1 estimation has focused on Mag-
netic Resonance Imaging (MRI) volumes [2–4]. However, these
methods are not well suited for ICV estimation in craniosynostotic
cases due to the limited bone-tissue contrast in MRI. In the case of
craniosynostosis, the best contrast of the cranial bones, e.g. for diag-
nosis and surgery planning, is obtained from CT scans. Furthermore,
standard methods often use atlases based on a normal population,
which may lead to a bias in the estimation of the ICV in craniosynos-
totic cases. The current standard for ICV estimation from CT is a
manual method based on thresholding followed by a seed-growing
algorithm. The problem with this method is the need for manual
editing in the various foramina in the skull base as well as in regions
where craniosynostosis or lacking suture fusion have caused gaps
between the cranial bones [5–7].

Anatomical segmentation such as the segmentation of the ICV
in medical images is addressed in the literature by a series of ap-
proaches. In [8], deformable template matching is applied in a
Bayesian setting; in [9], deformable surface models are proposed
using a graph cut approach; and in [10], a multiclass Markov Ran-
dom Field (MRF) is used for voxel classification. In the latter case it
is interesting that, for two-class models, global optimal segmenta-
tion can be obtained using a graph-cut-based approach [11]. In this
work we propose a two class segmentation of the ICV, where the
classes (inside and outside) are modeled as mixtures of Gaussians.
In addition to a label prior, we use a gradient-dependent interac-
tion term. Moreover, we employ a tetrahedralisation of a spherical
equidistant sample distribution leading to a graph. The graph has
dedicated outside and inside nodes, which robustly forces the
graph segmentation to be of genus 0.

3. Approach

The data consist of pre-surgical CT head scans of 15 children
aged from 6 to 18 months and diagnosed with UCS (either left-
or right-sided). Each child has an abnormal headshap/cranium
due to due to the UCS and the data set does not constitute a normal
distribution. The scans were obtained at 512 � 512 pixels in-plane
resolution and a complete volume consists of between 167 and 350

slices. The scans were acquired at Copenhagen University Hospital
except for one acquired at Helsinki University Central Hospital.

The aim of the method is to create a volumetric segmentation
that follows the transition between brain matter and bone, while
also closing holes in the bone structure. In order to learn statistics
from the CT attenuation images, we fit a mixture of Gaussians to
each individual scan. The mixture of Gaussians is carried out using
expectation maximization and results in three normal distribu-
tions describing: skin, brain matter and bone (see Fig. 2). The vari-
ances of skin and bone are higher compared to brain tissue, which
is used to classify the distributions unsupervised. Brain matter is
by far the dominant, but also that with the least variance. Using
the probability density function, where v is a sample value, we de-
fine the following two probabilities: pðv jx ¼ ICVÞ ¼ pdfbrain and
pðvjx – ICVÞ ¼ pdf skin þ pdfbone. Generally, the brain matter distri-
bution fits well to the data, while the other two tissues just stay be-
low and above both with a wider standard deviation. Using only
the mixture of Gaussians to classify brain-tissue and non-brain tis-
sue would lead to misclassification as the distributions are crude,
while the proposed method is insensitive to this.

Before the segmentation, the volumes were interpolated in the
slice-wise direction to create isotropic voxels and ensure a regular
sampling. A graph is created on sampling points in the volumes.
The sampling points are found using a spherical volume of

Fig. 1. (a) shows the ICV segmentation shown in read of our proposed method overlayed with transparent bones in grey. (b) is an example of a spherical volume with
equidistantly distributed nodes connected using Delaunay tetrahedralisation. The actual subsampling density is much denser than that shown in the image.

1 In MRI they often estimate the total intracranial volume (TIV).
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Fig. 2. A mixture of Gaussians shown on the intensity histogram of a CT scan. The
higher and lower attenuation values have been clipped and are not shown in the
graph.

260 R.R. Jensen et al. / Pattern Recognition Letters 49 (2014) 259–263



Download English Version:

https://daneshyari.com/en/article/535360

Download Persian Version:

https://daneshyari.com/article/535360

Daneshyari.com

https://daneshyari.com/en/article/535360
https://daneshyari.com/article/535360
https://daneshyari.com

