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a b s t r a c t

We propose new sets of Fourier–Mellin descriptors for color images. They are constructed using the Clif-
ford Fourier transform of Batard et al. (2010) [4] and are an extension of the classical Fourier–Mellin
descriptors for grayscale images. These are invariant under direct similarity transformations (transla-
tions, rotations, scale) and marginal treatment of colors images is avoided. An implementation of these
features is given and the choice of the bivector (a distinguished color plane which parameterizes the Clif-
ford Fourier transform) is discussed. The proposed formalism extends and clarifies the notion of direction
of analysis as introduced for the quaternionic Fourier–Mellin moments (Guo and Zhu, 2011). Thus,
another set of descriptors invariant under this parameter is defined. Our proposals are tested with the
purpose of object recognition on well-known color image databases. Their retrieval rates are favorably
compared to standard feature descriptors.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the literature, there are many recent advances in terms of im-
age recognition. The recognition process depends highly on dis-
criminative and invariant descriptors. Two main approaches can
be used: global methods which concern features calculated on
the entire image [5,38,35] and local methods based on feature
extraction around of keypoints (e.g. SIFT [23], GLOH [27], FAST
[30]).

Among global methods, one can cite moment-based descriptors
[15] such as Hu invariants [20], Legendre moments or Zernike mo-
ments [37]. Other approaches based on the computation of an his-
togram can be used [8]. An alternative to these methods is to define
descriptors in the frequency domain. For example, the family of
Fourier descriptors [38,34] is widely used because of their proper-
ties of invariance, speed of convergence, low computational time.
Originally, the 1-D Fourier descriptors [9,3] are obtained through
Fourier transform (FT) on a shape signature function derived from
shape boundary coordinates. More recently, 2-D Fourier descrip-
tors have been proposed. In this case, it is assumed that images
contain only one object and that the background is uniform. The
most common are the Generalized Fourier Descriptors (GFD) [34]
(invariant under translation and rotation) and the Fourier–Mellin
descriptors [32,10] (invariant under translation, rotation and scale)
computed from the Fourier–Mellin transform of a grayscale image.

This later is widely applied in the field of document processing
[32,17].

Originally, the Fourier–Mellin method is based on the polar
transformation of the image, followed by a Fourier transform then
a Mellin transform. More recently, Derrode and Ghorbel [10] pro-
posed a complete set of Fourier–Mellin descriptors using an analyt-
ical Fourier–Mellin transform. Three algorithms which consider
the original image, its polar and log-polar forms are defined to
accelerate the computation of these descriptors. This work empha-
sized the effect of the polar and log-polar transformation of an im-
age which are not exact (numerical interpolation is needed). This is
a well-known open issue that is currently under investigation by
Fenn et al. [14,22].

Extending these approaches to color images is not straightfor-
ward because they rely on the definition of a Fourier transform
on color images. More precisely, these images are no longer viewed
as functions from R2 to R but from R2 to R3 : the value of each pixel
is not a scalar but a vector. A classical generalization to color
images is the use of an ad hoc approach like the marginal one
[34], i.e. a separate treatment of each red, green, blue color plane.
Another method consists in encoding RGB color space within the
space of pure quaternions. In this framework, Sangwine and Ell
proposed a Quaternionic Fourier Transform (QFT) [31]. This one is
defined by replacing the imaginary unit i in the exponential of
the Fourier transform by a pure unit quaternion l, interpreted as
a direction of analysis. This latter is commonly set as the gray level
axis to obtain a luminance/chrominance analysis. Based on this
QFT, Guo and Zhu [18] derivated a quaternionic extension of the
Fourier–Mellin moments [32] with application to color image
registration.
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Clifford algebras [19], which contains the quaternion algebras,
can also be used to embed and process color images. In our previ-
ous works, the GFD have been extended in several ways to color
images yielding the Generalized Color Fourier Descriptors [24]
(GCFD1 and GCFD2) by using a Clifford Fourier transform (CFT) ded-
icated to color images [4].

In this paper, we define new sets of Fourier–Mellin descriptors
for color images, namely poFMD, CFMD and CFMDi, which are dif-
ferent extensions of the Fourier–Mellin moments computed from
the CFT.

In Section 2, definition and a fast implementation of the CFT
are recalled. Then, in Section 3–5, the three differents color Fou-
rier–Mellin descriptors are defined (their invariance under trans-
lations, rotations and scale changes are proven in (A) and (B)).
Finally, in Section 6 our proposals are tested with the purpose
of object recognition and retrieval on well-known color image
databases. Their retrieval rates are compared to standard feature
descriptors.

2. Clifford Fourier transform for color images (CFT)

Classical Fourier transforms [6,5,16] are usually defined for
complex valued functions that suited well for gray level, and not
for color images. The most immediate solution is to compute three
Fourier transforms independently on each channel of the color im-
age. This marginal method raises problems as emergence of false
colors in the case of color image filtering.

To avoid this marginal treatment, Batard et al. [4] defined a Fou-
rier transform for L2(R2; R4) functions using Clifford Algebras [19].
This one is different from other color Fourier transforms [31,12]
because it clarifies relations between the Fourier transform and
the action of the translation group through a spinor group. This
point of view justifies the necessity of choosing a direction of anal-
ysis. It is also demonstrated in [4] that the quaternionic Fourier
transform defined by Sangwine and Ell [31] is a particular case of
this definition.

2.1. Definition of the CFT

The RGB pixels of a color image can be embedded in R1
4;0 algebra

(vectors of R4;0) as follows

f ðxÞ ¼ rðxÞe1 þ gðxÞe2 þ bðxÞe3 þ 0e4: ð1Þ

with x ¼ ðx1; x2Þ and r; g; b are red, green and blue channels of a
color image.

The color Clifford Fourier transform CFT [4] of f 2 L2(R2; R1
4;0)

functions (i.e. a color image) with respect to an unit bivector B
(identifiable to an analysis plane) is the vector-valued function

bf BðuÞ ¼
Z

R2
e

1
2hu;xiBe

1
2hu;xiI4Bf ðxÞe�1

2hu;xiI4Be�
1
2hu;xiBdx ð2Þ

where I4 is the pseudo-scalar of R4;0 and I4B is an unit bivector
which is orthogonal to B. This color Fourier transform is invertible
and the inverse of the CFT is given by

f ðxÞ ¼
Z

R2
e�

1
2hu;xiBe�

1
2hu;xiI4Bbf BðuÞe

1
2hu;xiI4Be

1
2hu;xiBdu: ð3Þ

A vector can be decomposed in a parallel part and an orthogonal
part depending on the choice of the bivector B [19]. Being f an im-

age and B a bivector, this decomposition is f ¼ fBB�1 ¼ ðf � Bþ
f ^ BÞB�1 ¼ fkB þ f?B where fkB ¼ ðf � BÞB�1 (resp. f?B ¼ ðf ^ BÞB�1) is
the parallel (resp. orthogonal) projection of f on a bivector B.

After some elementary calculations, Eq. (2) can be rewritten

depending on this decomposition bf BðuÞ ¼ bf kBðuÞ þ bf ?BðuÞ where

bf kBðuÞ ¼ Z
R2

e
hu;xi

2 BfkBðxÞe�
hu;xi

2 Bdx ¼
Z

R2
fkBðxÞe�hu;xiBdx; ð4Þ

bf ?BðuÞ ¼
Z

R2
f?BðxÞe�hu;xiI4Bdx: ð5Þ

Now, the bivectors B and I4B can be identified to a pure imagi-

nary number i since B2 ¼ ðI4BÞ2 ¼ �1. Eqs. (4) and (5) can be calcu-
lated using two usual fast Fourier transforms.

Depending on the application, it may be advisable to recon-

struct bf B from bf kB and widehatf?B. The problem can be modelled
as a system of four equations where the unknowns are the coordi-

nates of bf B in the basis fe1; e2; e3; e4g (see details in [25,26]).
Computational complexity of the color Clifford Fourier trans-

form, including the reconstruction step, is O nlogðnÞð Þ where n is
the number of pixels of the considered image. Indeed, this one re-
quires only eight projections (O nð Þ) and two fast Fourier trans-
forms (O nlogðnÞð Þ).

The bivector B is a required parameter of the CFT, hence of any
derivated descriptors that are not invariant to the parameter. The
choice of a given B can be left to the user, assuming some prere-
quired knowledge about the dataset at hand. The next subsection
gives some guidelines for such choice.

2.2. Practical construction of a bivector B

An unit bivector B can be obtained with taking the geometric
product of two unit vectors v1; v2, orthogonal to each other
w.r.t. the quadratic formQ. The corresponding bivector can be geo-
metrically interpretable as the oriented plane spanned by v1 and
v2. Note that when v1 and v2 are not colinear, it is always possible
to find an Q-orthonormal basis taking the rejection of v2 on v1 and
scaling to unity. If the bivector Bc ¼ c ^ e4 (with c ¼ c1e1 þ c2e2þ
c3e3 a normed color vector chosen by the user) is considered, the
direction of analysis of the CFT is the same as the QFT by consider-
ing the unit quaternion l ¼ c1iþ c2jþ c3k in [13]. Let’s recall that
the QFT is used by Guo and Zhu [18] with l ¼ iþkffiffi

2
p .

In contrast of the quaternionic Fourier transform, the bivector
used in the CFT is more general and allows, for example, to take
hue planes by taking bivectors of the form Bc ¼ c ^ gray ¼
ðc1e1 þ c2e2 þ c3e3 ^ e1þe2þe3ffiffi

3
p Þ with c a color. In this case, the two

vectors must be orthogonalized using the following rejection
formula:

v3 ¼ ðv2 ^ v1Þv�1
1 ; ð6Þ

with v1; v2 two non orthogonal vectors, v3 a vector orthogonal to
v1 in the plane generated by v1 ^ v2 and ^ the outer product.

In Section 6, the sensitivity to the choice of B is tested and is
emphasized by different applications.

3. The parallel-orthogonal Fourier–Mellin descriptors (poFMD)

In this section, we propose to compute the classical Fourier–
Mellin moments (FMM) on parallel and orthogonal parts of the
CFT as in [25] with the Generalized Fourier Descriptors. The two
sets of moments can be concatenated and normalized to obtain a
description vector.

3.1. Definition of the poFMM

Definition 1. The Fourier–Mellin Moments (FMM) are defined for
an image f 2 L2ðR2;CÞ, expressed in polar coordinates, as

FMMf ðm;nÞ ¼
Z 1

r¼0

Z 2p

h¼0
rm�1f ðr; hÞe�inhdhdr: ð7Þ
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