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a b s t r a c t

We describe a probabilistic, nonparametric method for anomaly detection, based on a squared-loss objec-
tive function which has a simple analytical solution. The method emerges from extending recent work in
nonparametric least-squares classification to include a ‘‘none-of-the-above’’ class which models anoma-
lies in terms of non-anamalous training data. The method shares the flexibility of other kernel-based
anomaly detection methods, yet is typically much faster to train and test. It can also be used to distin-
guish between multiple inlier classes and anomalies. The probabilistic nature of the output makes it
straightforward to apply even when test data has structural dependencies; we show how a hidden Mar-
kov model framework can be incorporated in order to identify anomalous subsequences in a test
sequence. Empirical results on datasets from several domains show the method to have comparable dis-
criminative performance to popular alternatives, but with a clear speed advantage.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Anomaly detection is useful in several practical situations
where test data may be subject to unexpected regimes, for exam-
ple due to sensor failures, malicious user behavior, or external
changes to the system being modeled. In this letter we focus on
the form of the problem in which training samples without anom-
alies are provided, and the task is to calculate anomaly scores for
test data. This is distinct from the case in which a dataset contains
a mixture of inliers and outliers, and the task is to separate them
(often referred to as outlier detection, though note that some
authors use the terms ‘‘anomaly detection’’ and ‘‘outlier detection’’
interchangeably).

We propose a novel nonparametric method for addressing this
problem, based on the recently introduced least-squares probabi-
listic classifier (LSPC) [16]. As well as having the flexibility and dis-
criminative power of a kernel model, our method is fast at training
time, due to the convexity of ‘2 loss, and very fast at test time, sim-
ply requiring a weighted average of kernel basis functions for infer-
ence. If training data is labeled with multiple inlier classes, the
method can also be used for robust classification, i.e. for each test
datapoint we can calculate the probability of that point belonging
to each of the inlier classes as well as to the outlying, anomaly

class. Furthermore, being a probabilistic method it is straightfor-
ward to incorporate into models where the test data has structural
dependencies; we demonstrate how it can be incorporated into a
hidden Markov model framework in order to apply it to anomaly
detection in sequences.

In the remainder of this letter, we first review related work for
anomaly detection and the least-squares approach for probabilistic
classification, then show in Section 4 how the least-squares formu-
lation can be extended to assign a probability to a test input of it
being anomalous. In Section 5 we explain how this can be incorpo-
rated into a hidden Markov model (HMM) framework in order to
identify anomalies in sequential data. We give experimental re-
sults for the static anomaly detection method in Section 6 on sev-
eral standard datasets, showing it to have competitive accuracy
and superior speed compared to alternative methods, and illustrate
sequential anomaly detection on time series from medicine and
engineering.

The Python implementation of the method, including demon-
strations and code to recreate the experiments described here, is
available at http://cit.mak.ac.ug/staff/jquinn/software/lsanomaly.
html.

2. Related work

There are many existing methods for anomaly detection, for
which an extensive review can be found in [3]. Different assump-
tions might be made about the distribution of anomalous points
relative to the training, inlier points, which yield different
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methods. For instance, an assumption that anomalous datapoints
have a large distance from any of the training points leads to the
use of k-nearest neighbor methods for anomaly detection. An alter-
native is to make assumptions regarding clusters in the data, e.g.
that normal data points belong to clusters, whereas anomalous
data points do not, or that normal data points are usually closer
to the nearest cluster centroid than anomalous data points. Statis-
tical assumptions might also be made, e.g. that normal data points
occur in high-probability regions of the data space (according to
some stochastic model), whereas anomalous data points occur in
low-probability regions.

Kernel models have been used in a number of anomaly detec-
tion schemes. For example, kernel density estimation can be ap-
plied to data from the normal regime; a low estimated density
for test points indicates anomaly. Kernel recursive least-squares
has been used for anomaly detection by Ahmed et al. [1], in order
to calculate a codebook of vectors which represent the support of
the normal regime. Multi-scale kernel regression for anomaly
detection was proposed by Gao et al. [7], in which the length scales
in the kernel model of normality are varied according to the dis-
tances between training samples. Clustering in kernel space can
also be used to characterize the normal regime, providing stability
improvements over standard methods [6]. Gaussian process mod-
els can also be used for kernel-based outlier detection [9].

Our work begins with similar assumptions about the nature of
outliers as used in the one-class support vector machine [14] and
the kernel Fisher discriminant method for outlier detection [13],
as we describe in Section 4, though our choice of loss function leads
to a method which is comparable in terms of empirical perfor-
mance on benchmark data but usually faster to train and test.

3. Least-squares probabilistic classification

We now give a brief review of least-squares probabilistic classi-
fication [16]. Given labelled training data of the form fðxi; yiÞg

N
i¼1

where xi 2Rd is an input point in the data space, yi 2 Y is the
corresponding class label and Y ¼ f1; . . . ; cg is the set of possible
classes, we wish to be able to estimate the class-conditional prob-
ability pðyjxÞ. It is possible to construct functions qðy ¼ ijx; hiÞ to
estimate pðy ¼ ijxÞ for each i 2 Y, using an approximation of the
form

qðy ¼ ijx; hiÞ ¼ h>i /ðxÞ;

where

hi ¼ ðhi;1; . . . ; hi;BÞ> 2 RB

for some number of parameters B, and

/ðxÞ ¼ ðKðx;x1Þ; . . . ;Kðx;xBÞÞ> 2 RB

is a vector of kernel basis functions. We can set B ¼ N to have a ker-
nel basis function at every training point, or for B < N use some ran-
dom subset of the training points. In this work we use the squared

exponential kernel Kðx;x0Þ ¼ exp � 1
r2 jjx� x0jj2

� �
.

We fit this model using squared loss:

JiðhiÞ ¼
1
2

Z
qðy ¼ ijx; hiÞ � pðy ¼ ijxÞð Þ2pðxÞdx:

Expanding and using pðyjxÞ ¼ pðxjyÞpðyÞ=pðxÞ we obtain

JiðhiÞ ¼
1
2

Z
qðy ¼ ijx; hiÞ2pðxÞdx�

Z
qðy ¼ ijx; hiÞpðxjy ¼ iÞpðy ¼ iÞdxþ C:

Empirically, we can approximate the expectations by sample aver-
ages, and the prior pðy ¼ iÞ by sample ratios. Ignoring the constant
C, factor 1=N and including an ‘2-regularizer, we have the following
training criterion:

bJ iðhiÞ ¼
1
2

h>i U>Uhi � h>i Umi þ
q
2
khik2

;

where U ¼ /ðx1Þ; . . . ;/ðxNÞð Þ> and mi is a column vector indicating
membership of class i such that the jth element is one if yj ¼ i and
zero otherwise. bJ iðhiÞ is minimized bybhi ¼ U>Uþ qIB

� ��1
Umi; ð1Þ

which is essentially kernel ridge regression. We select q and r with
cross validation. Because of the nature of the estimator, it is some-
times possible to obtain estimates of posteriors which are negative.
We simply round up to zero in such cases,

qðy ¼ ijx; bhiÞ ¼max 0; bh>i /ðxÞ
� �

: ð2Þ

A posterior estimate is then obtained by normalizing over all
classes,

p̂ðy ¼ ijxÞ ¼ qðy ¼ ijx; bhiÞP
j2Yqðy ¼ jjx; bhjÞ

:

This least-squares approach is a consistent estimator and is very
fast to compute in practice, finding a global optimum in a single
step with no iterative parameter search required. Consistency is
guaranteed even in the case where estimates are rounded up to
zero, as discussed in [16, Section 2.2]. This formulation is therefore
an alternative to kernel logistic regression, providing similar theo-
retical guarantees and empirical accuracy, but with a speed increase
of orders of magnitude [16, Section 3].

4. Anomaly model

We now consider the case in which other classes c þ 1; cf
þ2; . . .g might be represented in the test data but not in the train-
ing data. We use y ¼ �; � R Y to denote any such anomaly class.
The supervised anomaly detection problem is to assign a value to
the estimate p̂ðy ¼ �jxÞ for some test data x given training data
only from classes in Y. Although we do not have explicit training
data, we are free to make assumptions about the possible distribu-
tion of such data relative to the ‘‘known’’ classes, yielding estima-
tors consistent with those assumptions.

The method we propose is similar in essence to the one-class
support vector machine [14]. These methods begin with the
assumption that outliers occupy low-density regions of the data
space and that a kernel model can be used to characterize the
high-density regions given training data. Any given significance
threshold can then be used to separate the inlier and outlier level
sets.

With some abuse of notation, we estimate the conditional prob-
ability of an outlier pðy ¼ �jx; hiÞ with

qðy ¼ �jx; h�Þ ¼ 1� h>� /ðxÞ: ð3Þ

The problem of identifying outliers can then be equated with learn-
ing h� such that Eq. (3) is close to zero when x is within a region in
which training data has high density, and is close to one anywhere
else. To achieve this we minimize the following loss function:

J�ðh�Þ ¼
1
2

Z
1� h>� /ðxÞ
� �2

pðxÞdxþ q
2
kh�k2

: ð4Þ

The integral term specifies the first part of the objective, that Eq. (3)
should be close to zero for inlying regions. For x in highly outlying
regions where /ðxÞ approaches the origin, Eq. (3) approaches one
for any choice of h�. However, the term q

2 kh�k
2 rewards choices of

h� for which Eq. (3) approaches one in outlying regions more
quickly. The objective function in this form is analogous to that in
[14], which uses a support vector machine to separate training data
from the origin with maximum margin.
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